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Abstract: To construct rigidly or locally supersymmetric bulk-plus-boundary actions,

one needs an extension of the usual tensor calculus. Its key ingredients are the extended

(F -, D-, etc.) density formulas and the rule for the decomposition of bulk multiplets into

(co-dimension one) boundary multiplets. Working out these ingredients for d = 4 N = 1

Poincaré supergravity, we discover the special role played by R-symmetry (absent in the

d = 3 N = 1 case we studied previously). The U(1)A R-symmetry has to be gauged which

leads us to extend the old-minimal set of auxiliary fields S,P,Aµ by a U(1)A compensator

a. Our results include the “F + A” density formula, the “Q + L + A” formula for the

induced supersymmetry transformations (closing into the standard d = 3 N = 1 algebra)

and demonstration that the compensator a is the first component of the extrinsic curvature

multiplet. We rely on the superconformal approach which allows us to perform, in parallel,

the same analysis for new-minimal supergravity.
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1. Introduction

Rigid and local supersymmetry (susy) in the presence of boundaries have been studied

before (see references in [1]), but in most of those studies boundary conditions (BC) were

imposed in order that the action remains supersymmetric in the presence of a boundary.

Often these BC were treated on a par with the BC one gets from the Euler-Lagrange

variational equations. We are, instead, interested in constructing actions that remain susy

without imposing any BC (“susy without BC”) by adding suitable boundary terms to the

action [1, 2]. For rigid susy, the formalism of co-dimension one superfields [3] provides

an easy way to construct bulk-plus-boundary actions that are “susy without BC” [4, 2].

In [1] we showed that the same could be achieved in the local susy case by developing a

boundary-extended tensor calculus for d = 3 N = 1 Poincaré supergravity (sugra). We

found there that the standard d = 3 F -density formula1

LF = e3

(
F +

1

2
ψMγ

Mχ+
1

4
AψMγ

MNψN +AS3

)
(1.1)

1Our conventions are summarized in appendix C. To avoid confusion with the auxiliary field S in d = 4,

we denote the auxiliary field in d = 3 by S3.
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for a scalar multiplet (A,χ, F ) interacting with the supergravity multiplet (eM
A, ψM , S3),

combined with a boundary “A-term,” gives rise to a bulk-plus-boundary action (that we

called the “F +A” formula)

S =

∫

M

d3xLF −
∫

∂M
d2xe2A (1.2)

This action is supersymmetric under half of bulk supersymmetry parametrized by

ǫ+(x) = 1
2 (1 + γ3̂)ǫ(x), provided we use modified local Poincaré susy transformations

δ′(ǫ+) = δP
Q(ǫ+) + δL(λa3̂ = −ǫ+ψa−) (1.3)

which close into the standard d = 2 N = (1, 0) gauge algebra. (Indices a and 3̂ are indices in

flat (tangent) space.) The accompanying (local) Lorentz transformation δL(λa3̂) we found

to be needed as a compensating transformation to maintain a particular Lorentz gauge,

em
3̂ = ea

3 = 0 (1.4)

This gauge is opposite to the standard Kaluza-Klein gauge choice e3
a = e3̂

m = 0. However,

as we demonstrate explicitly in appendix A, it is not necessary to impose this Lorentz

gauge. By using projection operators familiar from the Gauss-Codazzi equations [5], we

define projected induced symmetry transformations that lead to the same results.

We will demonstrate that the program of “susy without BC” works for d = 4 N = 1

supergravity, provided we use a formulation which maintains the U(1)A (with “A” for

“axial”) R-symmetry as a local symmetry. New-minimal sugra [6] inherits the U(1)A
gauge symmetry from conformal sugra [7], but in old-minimal sugra [8] the U(1)A local

symmetry has been gauge fixed. Thus we relax the U(1)A gauge, after which both old- and

new-minimal sugra can be treated on a par. We will find, in particular, that the modified

susy that is preserved by the boundary and which closes into the standard d = 3 N = 1

gauge algebra has the form

δ′(ǫ+) = δP
Q(ǫ+) + δL(λa3̂(ǫ+)) + δA(ω(ǫ+)) (1.5)

where the composite parameters λa3̂(ǫ+) and ω(ǫ+) of the Lorentz and U(1)A transforma-

tion, respectively, depend on the bulk fields only through ψa−. This field ψa− is superco-

variant under local ǫ+ susy transformations.

2. The “B problem”

When one tries to extend the d = 3 N = 1 results of [1] to the case of d = 4 N = 1 old-

minimal (Poincaré) supergravity, one runs into the following problem. The d = 4 F -density

for a scalar (chiral) multiplet (A,B,χ, F ′, G′) interacting with the supergravity multiplet

(eM
A, ψM , S, P,Aaux

M ) reads [9]

LF = e4

[
F ′ +

1

2
ψMγ

Mχ+
1

4
ψMγ

MN (A− iγ5B)ψN +AS +BP

]
(2.1)
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Under local susy (δeM
A = ǫγAψM , δψM = 2∂M ǫ + . . . , δA = ǫχ, δB = −ǫiγ5χ, etc.) it

varies into a total derivative,

δ(ǫ)LF = ∂M

{
e4

[
ǫγMχ+ ǫγMN (A− iγ5B)ψN

]}
(2.2)

In the gauge (1.4) and considering only the half of susy parametrized by ǫ+ ≡ 1
2 (1+γ3̂)ǫ(x)

with constant γ3̂, the variation of
∫
M
d4xLF gives (we take x3 ≥ 0 in M and the boundary

∂M at x3 = 0)

∫

∂M
d3xe3

[
ǫ+χ− + ǫ+γ

a(ψa+A− iγ5ψa−B)
]

(2.3)

where we defined ψa ≡ ea
mψm, ψa± ≡ 1

2(1 ± γ3̂)ψa and used ǫ+γ
3̂ = −ǫ+. We also

used that, in the gauge (1.4), e3 = e3̂
3e4 (with e3 = det em

a and e4 = det eM
A). From

δe3 = e3(ǫ+γ
aψa+) and δA = ǫ+χ−, one finds a natural candidate for the bulk-plus-

boundary action

SF+A =

∫

M

d4xLF −
∫

∂M
d3xe3A (2.4)

Its ǫ+ susy variation cancels the first two terms in (2.3) but the B-term remains

δ(ǫ+)SF+A =

∫

∂M
d3xe3(ǫ+iγ5γ

aψa−)B (2.5)

This poses a problem as it appears to be impossible to cancel this remaining variation

(without imposing any BC) within old-minimal supergravity.

A simple observation guides us towards the solution of this problem. Namely, the

“F + A” action would be invariant if we could modify the ǫ+ susy transformation by an

additional transformation rotating A into B with a composite parameter proportional to

ǫ+iγ5γ
aψa−. The bulk F -density should then be invariant under such a rotation. Recalling

that old-minimal sugra is a gauge-fixed version of conformal supergravity where such a

U(1)A symmetry has been gauge fixed, we reconsider the gauge-fixing procedure and restore

the U(1)A symmetry. One way of doing this would lead us to the known new-minimal

formulation; another way produces a new version of old-minimal supergravity with an

additional U(1)A compensator arising as a Stückelberg (or Goldstone) field.

3. Poincaré sugras preserving U(1)A

All known d = 4 N = 1 Poincaré sugras follow from the superconformal approach

by combining the gauge multiplet (eM
A, ψM , AM , bM ) of conformal sugra [7] with dif-

ferent conformal matter multiplets serving as “compensator multiplets” [10 – 12]. Cer-

tain components of these multiplets are gauge fixed to break extraneous superconfor-

mal symmetries (such as dilatations) while the remaining components become auxiliary

fields in the corresponding Poincaré sugra multiplet. Using a conformal chiral com-

pensator multiplet (A0, B0, χ0, F0, G0) one finds the old-minimal (OM) sugra multiplet

– 3 –
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(eM
A, ψM , Aaux

M , S, P ) with Aaux
M = −3

2AM , S = 3F0 and P = −3G0 [10], while using a

linear compensator multiplet (C0, χ0, B̃M ) one finds new-minimal (NM) sugra with multi-

plet (eM
A, ψM , AM , B̃M ) [12].2 However, as we show in appendix B, one can find further

consistent (extended Poincaré) sugras by relaxing some of the gauge fixing conditions.

Aimed at the problem at hand, we have relaxed the U(1)A gauge fixing condition

imposed in the derivation of OM sugra and derived an “old-minimal sugra with a U(1)A
compensator” (OMA sugra, for short). Its sugra multiplet is (eM

A, ψM , AM , S, P, φ), where

φ is the U(1)A compensator. Under (Poincaré) susy transformations δ(ǫ) = δP
Q(ǫ), Lorentz

transformations δ(λ) = δL(λAB) and U(1)A transformations δ(ω) = δA(ω) it varies as

follows (see (B.6))

δ(ǫ, λ, ω)φ = ω (3.1)

so that it is a susy singlet, a Lorentz scalar and a Goldstone boson of U(1)A. As it can

be gauge fixed to φ = 0 by a local U(1)A transformation, this is still a minimal (12+12)

Poincaré sugra.

We have thus two minimal sugras with local U(1)A symmetry: OMA and NM sugras.

Their (Poincaré) susy transformations are encoded in the “Q+ S +K” formula (B.7)

δP
Q(ǫ) = δQ(ǫ) + δS(ζ(ǫ)) + δK(ξA

K(ǫ)) (3.2)

where the parameter in the K (special conformal) transformation need not be specified

as all the (independent) fields are inert under it. The key information is contained in the

parameter ζ(ǫ) of the S (conformal susy) transformation. For OMA and NM sugras it is

given by (see equation (B.11) for OMA, and equation (3.28) in [12] for NM sugra)3

OMA: ζ(ǫ) = Hǫ, H = −1

3
(S − iγ5P + iγ5γ

ABA), BM = −3

2
(AM − ∂Mφ)

NM: ζ(ǫ) = H̃ǫ, H̃ =
1

2
iγ5γ

AB̃A, B̃M = B̃M (aMN ) (3.3)

We state explicitly only the δ(ǫ, λ, ω) transformation rules of eM
A and ψM ,

δ(ǫ, λ, ω)eM
A = ǫγAψM + λABeMB

δ(ǫ, λ, ω)ψM = 2D(ω̂)M ǫ− 3

2
iγ5ǫAM − γMζ(ǫ) +

1

4
λABγABψM +

3

4
iγ5ψMω (3.4)

They are the same in both OMA and NM sugras, apart from the difference in ζ(ǫ).

4. Solution of the “B problem”

Both in OMA and in NM supergravity, unlike in the case of OM sugra, it is not useful to

redefine the fields F and G of a chiral multiplet with weight n into fields F ′ and G′ whose

2The auxiliary vector eBM of NM sugra satisfies a constraint that can be explicitly solved in terms of a

prepotential aMN which introduces an additional gauge symmetry in the gauge algebra. For our discussion,

the introduction of aMN is not necessary.
3In OMA sugra we can replace (AM , φ) by (Aaux

M , a) = −
3

2
(AM , φ); then BM = Aaux

M − ∂Ma. Note also

that in appendix B the normalization of ǫ is a factor 2 smaller than in the main text.
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susy transformations rules are n-independent because in these supergravity theories there

are also chiral U(1)A transformations left which are n-dependent. Thus we work in both

these cases with the fields F and G, and use the same conformal F -density formula4

LF = e4

[
F +

1

2
ψAγ

Aχ+
1

4
ψAγ

AB(A− iγ5B)ψB

]
(4.1)

Under U(1)A the fields appearing in this density transform as (cf. (B.3))

δeM
A = 0, δψM =

3

4
iγ5ψMω, δF = −

(
n− 3

2

)
ωG

δA = −n
2
ωB, δB = +

n

2
ωA, δχ = i

(
n

2
− 3

4

)
γ5χω (4.2)

and one can check that LF is U(1)A invariant, δ(ω)LF = 0, provided n = 3. Under

(Poincaré) supersymmetry δ(ǫ) ≡ δP
Q(ǫ) it transforms into a total derivative5

δ(ǫ)LF = ∂M

{
e4

[
ǫγMχ+ ǫγMN (A− iγ5B)ψN

]}
(4.3)

which is of exactly the same form as in OM sugra, see (2.2). From here on the discussion

of section 2 applies, but now we can resolve the problem encountered there by an extra

(ǫ+)-dependent U(1)A transformation. For the “F +A” action in (2.4)

SF+A =

∫

M

d4xLF −
∫

∂M
d3xe3A (4.4)

the combined δ(ǫ+, ω) ≡ δP
Q(ǫ+) + δA(ω) variation gives

δ(ǫ+, ω)SF+A =

∫

∂M
d3xe3

[
(ǫ+iγ5γ

aψa−)B +
3

2
ωB

]
(4.5)

which vanishes provided ω(ǫ+) = −2
3(ǫ+iγ5γ

aψa−). This way the “B problem” is solved.

5. (Modified) induced susy transformations

Let us summarize what we have learned so far. First, in the presence of a boundary half of

susy is (spontaneously) broken and for this reason we consider only δ(ǫ+) [1]. Second, in the

gauge em
3̂ = ea

3 = 0 we need a compensating Lorentz transformation δ(λa3̂ = −ǫ+ψa−) [1];

another, gauge-independent reason for this modification is explained in appendix A. Third,

from the resolution of the “B problem,” which arose in the construction of the supersym-

metric bulk-plus-boundary “F + A” density formula, we found that we need a further

4As F ′ = F −
n
3
(SA + PB), G′ = G −

n
3
(SB − PA) [9], the Poincaré F -density (2.1) of OM sugra

coincides with the conformal F -density (4.1) when n = 3.
5Note that δP

Q(ǫ)LF = δQ(ǫ)LF as LF is K-invariant for any n (all fields in LF are K-invariant) and

S-invariant when n = 3. (Under S-supersymmetry, δA = δB = 0, δχ = n(A + iγ5B)ζ, δF = (1 − n)ζχ,

δG = −(1 − n)ζiγ5χ and δeM
A = 0, δψM = −γMζ, δAM = ζiγ5ψM , δbM = −(1/2)ζψM ; see [11, 12].) For

n = 3 LF is also Weyl invariant. (Under Weyl transformations, δA = nAλD, idem δB, δχ = (n+ 1/2)χλD,

δF = (n+1)FλD, idem δG, and further δeM
A = −eM

AλD, δψM = −(1/2)ψMλD, δAM = 0, δbM = ∂MλD.)
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modification, an additional U(1)A transformation δ(ω = −2
3ǫ+iγ5γ

aψa−). Putting all the

pieces together, we claim that the following ”Q+ L+A” formula

δ′(ǫ+) = δP
Q(ǫ+) + δL

(
λa3̂(ǫ+) = −ǫ+ψa−

)
+ δA

(
ω(ǫ+) = −2

3
(ǫ+iγ5γ

aψa−)

)
(5.1)

gives the correct (modified) induced susy transformation which one should consider as sur-

viving in the presence of the boundary. By “correct” we mean that this susy transformation

closes into the standard d = 3 N = 1 susy algebra, as we now explicitly demonstrate.

From the superconformal algebra and the “Q+S +K” rule, we find that the commu-

tator of two Poincaré susy transformations is given by (see (B.12) with ǫ rescaled to 2ǫ)

[δP
Q(ǫ1), δ

P
Q(ǫ2)] = δg.c.(ξ

M ) + δP
Q

(
− 1

2
ξAψA

)
+ δL(ξC ω̂C

AB + ǫ[1γ
ABζ2])

+δA(−ξAAA + 2ǫ[1iγ5ζ2]) (5.2)

where ξA = 2ǫ2γ
Aǫ1, ξ

M = ξAeA
M , ζ1,2 = ζ(ǫ1,2) with ζ(ǫ) given in (3.3), and [12] = 12−21.

From the “Q+L+A” form of the (modified) induced susy transformation we further find

[δ′(ǫ1+), δ′(ǫ2+)] = δg.c.(ξ
M ) + δP

Q(ǫ3) + δL(λ3
AB) + δA(ω3)

ǫ3 = −1

2
ξAψA +

1

4
γABǫ[1+λ2]

AB +
3

4
iγ5ǫ[1+ω2]

λ3
AB = ξC ω̂C

AB + ǫ[1+γ
ABζ2] + λ[2

ACλ1]C
B + δ′(ǫ[1+)λ2]

AB

ω3 = −ξAAA + 2ǫ[1iγ5ζ2] + δ′(ǫ[1+)ω2] (5.3)

where we took into account the field-dependence in composite parameters of Lorentz and

U(1)A transformations and denoted ζ2 ≡ ζ(ǫ2+), etc. Using λab(ǫ+) = 0 and the form of

λa3̂(ǫ+) and ω(ǫ+) in (5.1), we find for the composite parameters

ξa = 2(ǫ1+γ
aǫ2+), ξ3̂ = 2(ǫ1+γ

3̂ǫ2+) = 0 ⇒ ξm = ξaea
m, ξ3 = 0

ǫ3 = −1

2
ξaψa + ǫ̃, λ3

AB = ξcω̂c
AB + λ̃AB, ω3 = −ξaAa + ω̃ (5.4)

where we separated parts that need more work,

ǫ̃ ≡ 1

2
γa3̂ǫ1+λa3̂(ǫ2+) +

3

4
iγ5ǫ1+ω(ǫ2+) − (1 ↔ 2)

λ̃ab ≡ −ǫ2+γabζ−(ǫ1+) − λa3̂(ǫ2+)λb3̂(ǫ1+) − (1 ↔ 2)

λ̃a3̂ ≡ −ǫ2+γa3̂ζ+(ǫ1+) − ǫ2+δ
′(ǫ+)ψa− − (1 ↔ 2)

ω̃ ≡ −2ǫ2+iγ5ζ(ǫ1+) − 2

3
ǫ2+iγ5γ

aδ′(ǫ+)ψa− − (1 ↔ 2) (5.5)

After some Fierzing, we find (see appendix C)

ǫ̃ =
1

2
ξaψa− ⇒ ǫ3 = −1

2
ξaψa+ ⇒ ǫ3+ = −1

2
ξaψa+, ǫ3− = 0 (5.6)

– 6 –
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Writing ω̂mab = ω̂+
mab + κ−mab (where ω̂+

mab depends only on ψm+ and κ−mab is the part

of the contorsion that depends only on ψm−), Fierzing and using that the complete

antisymmetrization of three d = 3 indices must be proportional to the d = 3 Levi-Civita

tensor, we find (see appendix C)

λ3
ab = ξcω̂+

c
ab − ǫ[2+γ

abζ ′−(ǫ1]+), ζ ′(ǫ+) ≡ ζ(ǫ+) +
1

8
iγ5ǫ+(ψa−iγ5γ

abψb−) (5.7)

In the next section, we will further simplify this expression using the explicit form of ζ(ǫ)

for OMA and NM sugras.

To work out λ3
a3̂ and ω3, we need first to determine δ′(ǫ+)ψa−. As a warm up exercise,

we evaluate δ′(ǫ+)em
a and δ′(ǫ+)ea

m. We have

δ′(ǫ+)em
a = ǫ+γ

aψm + λa3̂em
3̂ = ǫ+γ

aψm+

δ′(ǫ+)ea
m = −ǫ+γmψa + λa3̂e3̂

m

= −ǫ+(γbeb
m + γ3̂e3̂

m)ψa − (ǫ+ψa−)e3̂
m = −ǫ+γbψa+eb

m (5.8)

where we used em
3̂ = 0, which is our gauge choice (1.4); but note that e3̂

m 6= 0. For δ′(ǫ+)

of ψa− = ea
mP−ψm, with P− = 1

2(1 − γ3̂), we have, using (3.4),

δ′(ǫ+)ψa− =
[
δ′(ǫ+)ea

m
]
ψm− + ea

mP−

[
2

(
∂m +

1

4
ω̂mcbγ

cb +
1

2
ω̂mc3̂γ

c3̂

)
ǫ+

−3

2
iγ5ǫ+Am − γmζ(ǫ+) +

1

2
γc3̂ψmλ

c3̂(ǫ+) +
3

4
iγ5ψmω(ǫ+)

]
(5.9)

As P−ǫ+ = 0, the term with ∂mǫ+ is projected out. This shows that ψa− is supercovariant

under δ′(ǫ+) susy. We expect supercovariant quantities to transform into supercovariant

quantities, and we find that this is indeed the case (see appendix C):

δ′(ǫ+)ψa− = γbǫ+K̂ab −
3

2
iγ5ǫ+Âa − γaζ+(ǫ+) (5.10)

where K̂ab is the supercovariant extrinsic curvature tensor and Âa is the supercovariant

d = 3 vector part of the U(1)A gauge vector AA,

K̂ab = ω̂ab3̂ −
1

2
ψa+ψb−, Âa = Aa +

1

3
ψa+iγ5γ

bψb− (5.11)

We emphasize that the supercovariance is with respect to the (modified) induced susy

transformation δ′(ǫ+); for example,

δ′(ǫ+)Aa = δA(ω(ǫ+))Aa + · · · = ∂aω(ǫ+) + · · · = −2

3
(∂aǫ+)iγ5γ

bψb− + . . .

leads us to Âa (as δψa+ = 2∂aǫ+ + . . . ).

For λ̃a3̂ we now have

λ̃a3̂ = −ǫ2+γaζ+(ǫ1+) − ǫ2+

[
γbǫ1+K̂ab −

3

2
iγ5ǫ1+Âa − γaζ+(ǫ1+)

]
− (1 ↔ 2) (5.12)

– 7 –
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We see that the two ζ-dependent terms cancel while Âa-dependent term vanishes due to

“1 ↔ 2.” Using ξa = 2(ǫ2+γ
aǫ1+) we find λ̃a3̂ = −ξbK̂ab, while using K̂ab = K̂ba we obtain

the final result

(λ3)a3̂ = −ξb(K̂ba − ω̂ba3̂) =
1

2
ξbψb+ψa− = λa3̂(ǫ3+) (5.13)

where λa3̂(ǫ+) = −ǫ+ψa− and ǫ3+ = −1
2ξ

bψb+ according to (5.6).

The calculation of ω3 is equally simple. We start with

ω̃ = −2ǫ2+iγ5ζ+(ǫ1+) − 2

3
ǫ2+iγ5γ

a

[
γbǫ1+K̂ab −

3

2
iγ5ǫ1+Âa − γaζ+(ǫ1+)

]
− (1 ↔ 2) (5.14)

Again, the ζ-dependent terms cancel, now thanks to γaγa = 3. The term with K̂ab vanishes

due to K̂ab = K̂ba and “1 ↔ 2.” Using γ5γ
aγ5 = −γa, we find ω̃ = ξaÂa. This finally gives

ω3 = ξa(Âa −Aa) =
1

3
ξa(ψa+iγ5γ

bψb−) = ω(ǫ3+) (5.15)

where ω(ǫ+) = −2
3ǫ+iγ

5γbψb− and ǫ3+ = −1
2ξ

aψa+.

We now collect our findings. For the commutator (5.3) of two (modified) induced susy

transformations, we obtain

[δ′(ǫ1+), δ′(ǫ2+)] = δg.c.(ξ
aea

m) + δP
Q(ǫ3+) + δL(λab

3 ) + δL(λa3̂(ǫ3+)) + δA(ω(ǫ3+))(5.16)

where ξa = 2(ǫ2+γ
aǫ1+), ǫ3+ = −1

2ξ
aψa+ and λ3

ab is given in (5.7). We observe that the

(unmodified) Poincaré susy, off-diagonal Lorentz and the U(1)A transformations on the

right hand side recombine into the (modified) induced susy transformation δ′(ǫ3+) and the

result is simply

[δ′(ǫ1+), δ′(ǫ2+)] = δg.c.(ξ
aea

m) + δ′
(
− 1

2
ξaψa+

)
+ δL(λab

3 ) (5.17)

Up to some final simplification of λab
3 and decomposition of 4-component spinors ǫ+ and

4×4 gamma matrices γa in terms of 2-component spinors and 2×2 gamma matrices, which

will be done in the next section, this is the correct d = 3 N = 1 susy algebra confirming our

claim that δ′(ǫ+) in (5.1) is the correct expression for the induced susy transformations.

6. Induced sugra multiplets in OMA and NM sugra

Our “F + A” action formula (4.4) gives one possible δ′(ǫ+)-supersymmetric bulk-plus-

boundary completion of the bulk F -density formula. However, other possibilities exist

because we can add further, separately δ′(ǫ+)-supersymmetric, boundary actions. To con-

struct such boundary actions and to obtain an explicit boundary F -density formula, we

need first to find the induced sugra multiplet.

We have found already that δ′(ǫ+)em
a = ǫ+γ

aψm+. To identify the combination of bulk

fields which plays the role of the d = 3 auxiliary field S3 in the induced sugra multiplet
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(em
a, ψm+, S3) we need to work out δ′(ǫ+)ψm+. Using ψm+ = P+ψm, P+ = 1

2(1 + γ3̂)

and (3.4), we write

δ′(ǫ+)ψm+ = P+

[
2

(
∂m +

1

4
ω̂mabγ

ab +
1

2
ω̂ma3̂γ

a3̂

)
ǫ+

−3

2
iγ5ǫ+Am − γmζ(ǫ+) +

1

2
γa3̂ψmλ

a3̂(ǫ+) +
3

4
iγ5ψmω(ǫ+)

]
(6.1)

Now it is the ω̂ma3̂ and Am dependent terms which are projected out. For the remain-

ing terms, after some algebra very similar to that used in deriving (5.7), we find (see

appendix C)

δ′(ǫ+)ψm+ = 2D′(ω̂+)mǫ+ − γmζ
′
−(ǫ+), ζ ′(ǫ+) ≡ ζ(ǫ+) +

1

8
iγ5ǫ+(ψa−iγ5γ

abψb−) (6.2)

where D′(ω̂+)m is the induced supercovariant derivative,

D′(ω̂+)m = ∂m +
1

4
ω̂+

mabγ
ab, ω̂+

mab = ω(e)mab + κ+
mab (6.3)

Using the explicit form of ζ(ǫ) for OMA and NM sugras, see (3.3), we find

OMA: ζ+(ǫ+) = −1

3
(S + iγ5γ

aBa)ǫ+, ζ−(ǫ+) =
1

3
iγ5ǫ+(P −B3̂)

NM: ζ+(ǫ+) =
1

2
iγ5γ

aǫ+B̃a, ζ−(ǫ+) =
1

2
iγ5ǫ+B̃3̂ (6.4)

Therefore, in both cases we can write ζ ′−(ǫ+) = −1
2 iγ5ǫ+S3 so that

δ′(ǫ+)ψm+ = 2D′(ω̂+)mǫ+ − 1

2
iγ5γmǫ+S3 (6.5)

where S3 is given by

OMA: S3 = −2

3
(P −B3̂) −W, W ≡ 1

4
ψa−iγ5γ

abψb−

NM: S3 = −B̃3̂ −W (6.6)

Note that W is supercovariant (as ψa− is supercovariant) under δ′(ǫ+). Note also that

plugging ζ ′−(ǫ+) = −1
2 iγ5ǫ+S3 into (5.7), we find

λab
3 = ξcω̂+

c
ab + (ǫ2+iγ5γ

abǫ1+)S3 (6.7)

To establish the connection with the d = 3 expressions as given in [1], we now introduce

a decomposition of 4-component spinors ψ± and 4 × 4 gamma matrices γa, γ3̂, γ5 into 2-

component spinors ψ1,2 and 2 × 2 gamma matrices γ̂a:

ψ =

(
ψ1

ψ2

)
, γ3̂ =

(
1 0

0 −1

)
⇒ ψ+ =

(
ψ1

0

)
, ψ− =

(
0

ψ2

)

γa =

(
0 γ̂a

γ̂a 0

)
⇒ γab =

(
γ̂ab 0

0 γ̂ab

)
, iγ5 =

(
0 −1

1 0

)
(6.8)
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where γ5 ≡ γ1̂γ2̂γ3̂iγ0̂ with γ2
5 = 1, and we require that γ̂abc = +ǫabc3̂. For Dirac conjuga-

tion we have

ψ ≡ ψ†iγ0̂ = (ψ2, ψ1), ψ1,2 ≡ ψ†
1,2iγ̂

0̂ (6.9)

Using this decomposition with ǫ+ =

(
ǫ1
0

)
, ǫ1+ =

(
ǫ11
0

)
and ǫ2+ =

(
ǫ21
0

)
we obtain

δ′(ǫ1)em
a = ǫ1γ̂

aψm1

δ′(ǫ1)ψm1 = 2D′(ω̂1)mǫ1 +
1

2
γ̂mǫ1S3

λab
3 = ξcω̂1

c
ab + (ǫ21γ̂

abǫ11)S3 (6.10)

where ω̂1
mab depends only on em

a and ψm1. We observe that this is exactly the structure

of d = 3 expressions. Therefore,

(em
a, ψm1, S3) (6.11)

is indeed the correct d = 3 N = 1 (Poincaré) sugra multiplet, and δ′(ǫ1) indeed closes into

the standard d = 3 N = 1 (Poincaré) susy algebra,

[δ′(ǫ11), δ
′(ǫ21)] = δg.c.(ξ

aea
m) + δ′

(
− 1

2
ξaψa1

)
+ δL

(
ξcω̂1

c
ab + (ǫ21γ̂

abǫ11)S3

)
(6.12)

where ξa = 2(ǫ21γ̂
aǫ11).

For a (composite) d = 3 N = 1 scalar multiplet (Ã, χ̃, F̃ ) on the boundary, we can now

write a (separately δ′(ǫ1) supersymmetric) F -density

L̃F = e3

(
F̃ +

1

2
ψa1γ̂

aχ̃+
1

4
Ãψa1γ̂

abψb1 + ÃS3

)
(6.13)

This boundary F -density formula, in conjunction with the “F +A” formula (4.4), provides

means to construct general δ′(ǫ+) supersymmetric bulk-plus-boundary actions:

S =

∫

M

d4xLF −
∫

∂M
d3xe3A+

∫

∂M
d3xL̃F (6.14)

7. Extrinsic curvature multiplet in OMA sugra

The U(1)A compensator φ of OMA sugra has not appeared explicitly in the discussion of

the induced supergravity multiplet. However, it becomes an essential part of the extrinsic

curvature multiplet of OMA sugra, as we now demonstrate.

Although φ is a susy singlet under δP
Q(ǫ) transformation of OMA sugra, see (3.1), it is

not a singlet under the (modified) induced susy transformation δ′(ǫ+)

δ′(ǫ+)φ = ω(ǫ+) = −2

3
ǫ+iγ

5γaψa− ⇒ δ′(ǫ+)a = ǫ+iγ
5γaψa− (7.1)
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where a = −3
2φ. On the other hand, from the result for δ′(ǫ+)ψa− in (5.10) and the explicit

form for ζ+(ǫ+) in OMA sugra in (6.4), we have

δ′(ǫ+)ψa− = γbǫ+K̂ab −
3

2
iγ5ǫ+Âa +

1

3
γa(S + iγ5γ

bBb)ǫ+ (7.2)

Contracting with γa and using γaγa = 3 and γaγbK̂ab = ηabK̂ab ≡ K̂, we find

δ′(ǫ+)(γaψa−) = (K̂ + S)ǫ+ + iγ5γ
aǫ+

(
3

2
Âa +Ba

)
(7.3)

According to (3.3) and (5.11), Ba = −3
2Aa − ∂aa and Âa = Aa + 1

3ψa+iγ5γ
bψb−, which

gives

3

2
Âa +Ba = −∂aa+

1

2
ψa+iγ5γ

bψb− = −D̂aa (7.4)

where D̂aa is the δ′(ǫ+) supercovariant derivative of a. Therefore,

δ′(ǫ+)(γaψa−) = (K̂ + S)ǫ+ − iγ5γ
aǫ+D̂aa (7.5)

Converting to the 2-component notation of (6.8), we finally find that

δ′(ǫ1)a = ǫ1γ̂
aψa2, δ′(ǫ1)(γ̂

aψa2) = (K̂ + S)ǫ1 + γ̂aǫ1D̂aa (7.6)

where D̂aa = ∂aa− 1
2ψa1γ̂

bψb2. This shows that

(a, γ̂aψa2, K̂ + S) (7.7)

is a standard d = 3 N = 1 (Poincaré) scalar multiplet. As it contains the trace K̂ of the

(supercovariant) extrinsic curvature tensor K̂ab, we call it the extrinsic curvature multiplet.

Therefore, we found that the U(1)A compensator a (or φ) plays a geometrical role: it is

the first component of the extrinsic curvature multiplet.

8. Conclusions

To summarize, we have extended the program of “susy without BC” [1] to d = 4 N = 1

Poincaré sugra. The new ingredient of the d = 4 N = 1 (superconformal) algebra compared

to the one in the d = 3 N = 1 case considered in [1] is the U(1)A R-symmetry. We found

that this symmetry plays a crucial role for the bulk-plus-boundary supersymmetry. Bulk

sugra must have the local U(1)A among its symmetries for the program of “susy without

BC” to work. This was demonstrated explicitly on the example of old-minimal (OM) sugra,

where the U(1)A has been gauge fixed and correspondingly the “B problem” arose in the

attempt to make the bulk F -density supersymmetric in the presence of boundary.

To resolve this problem with only a minor deviation from the OM sugra set of auxiliary

fields, we have introduced a U(1)A compensator φ (or a = −3
2φ) while at the same time

restoring the role of Aaux
M (or rather AM = −2

3A
aux
M ) as the U(1)A gauge field; we call this

new version of supergravity the OMA sugra.
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Having restored the local U(1)A, we managed to complete the “susy without BC”

program. The resulting bulk-plus-boundary action formula is formally the same “F + A”

formula as for the d = 3 N = 1 case, but the (modified) induced susy transformation

δ′(ǫ+) contains, in addition to δP
Q(ǫ+) and the (compensating) Lorentz transformation

δL(λa3̂(ǫ+) = −ǫ+ψa−) (both present in the d = 3 case), also a particular ǫ+ dependent

U(1)A transformation, δA(ω(ǫ+) = −2
3ǫ+iγ5γ

aψa−). The key check that δ′(ǫ+) has been

correctly identified came from showing that the commutator of two such transformations

closes into the standard d = 3 N = 1 (Poincaré) susy algebra. This also allowed us to

identify a subset of fields of bulk d = 4 sugra as the fields of the standard d = 3 sugra

multiplet. This multiplet could then be straightforwardly used to construct separately susy

boundary actions using the standard d = 3 F -density formula.

In addition to the induced sugra multiplet, we have identified the complementary

extrinsic curvature tensor multiplet and discovered that the compensator φ (or rather

a) is the first component in this multiplet. This is an example of a general phenomenon:

certain pure gauge bulk degrees of freedom may turn into physically (or even geometrically)

relevant fields in the presence of a boundary. (We observed another such example in the

(rigidly susy) Chern-Simons theory in d = 3 [2].)

The analysis of new-minimal (NM) sugra, another Poincaré sugra with the local U(1)A
preserved, was performed in parallel with that for OMA sugra. We intend to present several

applications of our formalism in both OMA and NM sugra in a later publication.

Finally, in appendix A we discussed how the same analysis can be performed without

ever imposing the Lorentz em
3̂ = ea

3 = 0 gauge but using projection operators. These

projection operators resemble the operators used in the derivation of the Gauss-Codazzi

equations for induced curvatures, but we needed to extend this formulation to the case of

vielbeins instead of metrics. We found that working with those projection operators gives

results which are isomorphic to working in the gauge, and since the latter procedure is

much simpler, we decided to use in the main text only the gauge-fixed approach.
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A. Projective formulation

In this appendix we demonstrate how the modification of ǫ+ susy by an off-diagonal Lorentz

transformation, see (5.1), arises in a geometrical approach (that we call “projective for-

mulation”) where, instead of imposing the gauge (1.4), we work with projected indices

and projected transformations. There is a simple correspondence between objects (such

as the induced vielbein, etc.) in the “gauge-fixed” and “projective” formulations that will

become clear as we proceed. Once this correspondence is established, the results in the

two formulations become isomorphic.
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The projective formulation is the covariant formulation where geometrical objects re-

lated to boundaries (or hypersurfaces) such as the induced metric (the first fundamental

form), the extrinsic curvature (the second fundamental form), the induced covariant deriva-

tive, etc., are defined [5] using the projector PM
N = δM

N − nMn
N where nM is the (unit,

outward pointing) normal to the boundary. In applications to General Relativity it is suffi-

cient to work with tensors having world indices (M,N); however, when fermions are present,

one must also introduce tangent vector indices (A,B) and spinor indices (α, β). The corre-

sponding projective formulation has been developed and applied before (see e.g. [13]), but

to the best of our knowledge the extension to vielbeins and projected susy transformations

(see below) have not been discussed in the literature.

First of all, we note that using a projective formulation for world indices is not needed

for our purposes. We can freely choose our coordinates xM in such a way that the boundary

∂M is at x3 = 0 and the space M is “to the right” of ∂M (i.e. x3 > 0 for points in M). This

choice in no way restricts the local parameter ξM (x) of general coordinate transformations.

Making this choice, our normal nM and its tangent space analog nA = eA
MnM are given by

nM =

(
~0,− 1√

g33

)
⇒ nA = − eA

3

√
g33

(A.1)

where the normalization follows from gMNnMnN = ηABnAnB = 1 and the minus sign

ensures that the normal is outward pointing. We define the following projectors for

tangent vectors and spinors6

PA
B = δA

B − nAn
B, NA

B = nAn
B, P± =

1

2
(1 ± nAγ

A) (A.2)

where the spinor indices of P± have been suppressed. The projectors satisfy the standard

properties (PA
B +NA

B = δA
B, P+ + P− = 1, PA

BPB
C = PA

C , PA
BNB

A = 0, P+P− = 0,

etc.) and allow a decomposition of Lorentz vectors VA and spinors ψ into “parallel”

(VA′ , ψ+) and “normal” (VȦ, ψ−) components

VA = VA′ + VȦ, VA′ ≡ PA
BVB , VȦ ≡ NA

BVB ; ψ = ψ+ + ψ−, ψ± ≡ P±ψ (A.3)

We also define V3̇ ≡ nAVA so that VȦ = nAV3̇.

Applying this formalism to the Lorentz index of the vielbein eM
A = (em

A, e3
A) and

its inverse eA
M = (eA

m, eA
3), we immediately find two identities

em
3̇ ≡ em

AnA = −em
AeA

3

√
g33

= 0

eA′
3 ≡ PA

BeB
3 = −

√
g33PA

BnB = 0 (A.4)

Defining ĝmn ≡ em
A′

en
B′

ηAB and ĝmn ≡ ηABeA′
meB′

n where

em
A′ ≡ em

BPB
A, eA′

m ≡ PA
BeB

m (A.5)

6In local superspace there is a distinction between world space spinor indices and tangent space spinor

indices. However, for spinors defined in x-space, one identifies the two concepts (by taking the “spinor

vielbein” to be unity) and speaks simply of “spinor indices.”
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a short calculation shows that ĝmn = em
Aen

BηAB = gmn which is the induced metric at a

hypersurface with constant x3, whereas ĝmn = PABeA
meB

n = gmn − (gm3gn3/g33) satisfies

ĝmk ĝ
kn = δm

n and is thus the inverse of the induced metric. In this sense em
A′

can be called

the induced vielbein and eA′
m its inverse (although both are not even square matrices).7

In General Relativity, given a bulk (world space) tensor T and the bulk covariant

derivative ∇M , we have two candidates for the induced (“hypersurface compatible”) co-

variant derivative of the corresponding projected tensor T ′ ≡ PT ,

∇′T ′ ≡ P∇T, ∇′′T ′ ≡ P∇T ′ (A.6)

where “P” is a symbolic projector whose precise form depends on the index structure of

the tensor to which it is applied. For T ′
M ≡ TM ′ ≡ PM

NTN , we have

∇′
MTN ′ ≡ PN

N1PM
M1∇M1

TN1

∇′′
MTN ′ ≡ PN

N1PM
M1∇M1

(PN1

N2TN2
) (A.7)

Defining the extrinsic curvature tensor as KMN = −PM
M1PN

N1∇N1
nM1

= KNM (see [5,

1]), we find a relation between both derivatives

∇′′
MTN ′ = ∇′

MTN ′ +KMN (nKTK) (A.8)

We used PM
M1PN

N1∇N1
PM1

K = KMNn
K , which in turn implies

∇′
MPN

K ≡ PN
N1PM

M1(∇M1
PN1

K1)PK1

K = 0 (A.9)

Thus the projector PM
N commutes with the projected derivative ∇′. Since ∇′ = ∇′′ on the

projector, it commutes with both ∇′ and ∇′′: ∇′P = ∇′′P = 0. Similarly, if the original

tensor T is already projected, T = PT , then ∇′T = ∇′′T (which may be the reason why

∇′ and ∇′′ are usually not distinguished [5]).

We now use this approach to define projected transformations. (Recall that we use

only projectors for tangent space vector and spinor indices; world space vector indices

are simply decomposed as M = (m, 3).) Given a transformation δ, defined for a bulk

(Lorentz) tensor T , we define, for a projected tensor T ′ ≡ PT , the corresponding projected

transformation δ′ as follows

δ′T ′ ≡ PδT (A.10)

where P is the identity for scalars, or any of PA
B , NA

B , P± or their tensor products for

tensors and spinors. For example, δ′TA′Ḃ = PA
A1NB

B1δTA1B1
. It immediately follows that

for any transformation δ, the corresponding projected transformation δ′ of the normal

vector nA = NA
BnB vanishes

δ′nA ≡ NA
BδnB = 0 (A.11)

7If one does not make the M = (m, 3) decomposition, but uses both world space and tangent space

projectors, the induced vielbein is PM
NeN

BPB
A. This is a square matrix but with vanishing determinant.
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where we used nAδnA = 0 which follows from the normalization condition nAnA = 1. One

can similarly prove that all projectors are invariant under (i.e. commute with) the projected

transformations

δ′(PA
B , NA

B , P±) = 0 (A.12)

For example, δ′P+ = P+(δP+)P+ = 1
2 (δnA)(P+γ

AP+) = 1
2(nAδnA)P+ = 0 where we used

nAδnA = 0 and the identity P±γ
AP± = ±nAP± which follows from P±γ

A = γAP∓ ± nA.

For projected Lorentz transformations we have, according to our definition in (A.10),

δ′(λ)VA′ = PA
Bδ(λ)VB = PA

BλB
CVC , etc. It is straightforward to show that

δ′(λ)VA′ = λA′
B′

VB′ + λA′
3̇V3̇, δ′(λ)V3̇ = λ3̇

B′

VB′

δ′(λ)ψ± =
1

4
λA′B′

γA′B′ψ± +
1

2
λA′3̇γA′3̇ψ∓ (A.13)

where γA′ = PA
BγB and γ3̇ = nAγA. As a consequence of {γA, γB} = 2ηAB , we find that

{γA′

, γB′} = PAB , {γA′

, γ3̇} = 0, {γ3̇, γ3̇} = 2 (A.14)

(Note that V A′ ≡ V BPB
A = PABVB = ηABVB′ while V 3̇ ≡ nAV

A = nAVA ≡ V3̇.)

Let us now turn to the projected supersymmetry transformations. We define parame-

ters ǫ± by ǫ± = P±ǫ which yields γ3̇ǫ± = ±ǫ±. Note that ǫ± are field-dependent. Starting

from δ(ǫ)eM
A = ǫγAψM , we find for δ′(ǫ+) ≡ Pδ(ǫ+) acting on the projected parts of the

vielbein eM
A the following results

δ′(ǫ+)em
A′

= ǫ+γ
A′

ψm+, δ′(ǫ+)em
3̇ = −ǫ+ψm−

δ′(ǫ+)e3
A′

= ǫ+γ
A′

ψ3+, δ′(ǫ+)e3
3̇ = −ǫ+ψ3− (A.15)

At this point we note that we have run into a problem: our projected susy transformation

does not preserve the identity em
3̇ ≡ em

AnA ≡ 0 of (A.4)! On the other hand, it is still true

that δ(ǫ+)em
3̇ = 0. It is easy to understand what is going on from the following identity:

δ′em
3̇ = nAδem

A = δem
3̇ − em

AδnA = δem
3̇ − em

A′

δnA (A.16)

For a general variation δ of nA = −eA3/
√
g33 one finds

δnA = −PA
BδeB

3

√
g33

(A.17)

which gives δ(ǫ)nA = −ǫγ3̇ψA′ and therefore δ(ǫ+)nA = ǫ+ψA′−. (Note that this is con-

sistent with δ′(ǫ+)nA = NA
Bδ(ǫ+)nB = 0.) Now it is clear that δ′(ǫ+)em

3̇ 6= 0 is due to

δ(ǫ+)nA 6= 0 even though δ(ǫ+)em
3̇ = 0.

The identity em
3̇ ≡ 0 is also not preserved by the projected Lorentz transformations

as δ′(λ)em
3̇ = −emA′

λA′
3̇. For a combined transformation δ′(ǫ, λ) = δ′(ǫ) + δ′(λ) we find

δ′(ǫ, λ)em
3̇ = −emA′

(
λA′3̇ + δ(ǫ)nA

)
(A.18)
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Therefore, preservation of em
3̇ ≡ 0 forces us to modify the projected transformations by

adding a compensating Lorentz transformation with parameter λA′3̇ = −δnA. For ǫ+ susy

this leads to the following modified projected transformation

δ′′(ǫ+) = δ′(ǫ+) + δ′L

(
λA′3(ǫ+) = −ǫ+ψA′−

)
(A.19)

Similar modifications are required for all other projected transformations. Since under

Lorentz transformations δ(λ)nA = λA
BnB = λA′

3̇, we find that

δ′′(λA′B′) = δ′(λA′B′), δ′′(λA′3̇) = 0 (A.20)

whereas for general coordinate transformations it follows from δ(ξ)nA = ξM∂MnA that8

δ′′(ξ) = δ′(ξ) + δ′L

(
λA′3̇ = −ξM∂MnA

)
(A.21)

Having come so far, let us ask what happens if, instead of δ′T ′ ≡ PδT , as in (A.10),

we define an (alternative) projected transformation by

δ′′T ′ ≡ PδT ′ (A.22)

where T ′ ≡ PT . Obviously, we have δ′′T ′ = δ′T ′ + (PδP )T . (Note that δ′P = P (δP )P

in (A.12) vanishes, but, as we shall show, PδP is nonvanishing.) Writing this out more

explicitly for the basic projected tensors and spinors T ′ = (VA′ , VȦ, ψ±), we find

δ′′VA′ = δ′VA′ + (PA
BδPB

C)VC , PA
BδPB

C =−(PA
BδnB)nC =−(δnA)nC

δ′′VȦ = δ′VȦ + (NA
BδNB

C)VC , NA
BδNB

C =nAn
BnBδn

C =nAδn
C

δ′′ψ± = δ′ψ± + (P±δP±)ψ, P±δP±=P±

(
± 1

2
δnAγ

A

)
=−1

2
δnAγ

Aγ3̂P∓ (A.23)

where we used PA
BnB = 0, nAδnA = 0, nBnB = 1, P±γ

A = γAP∓±nA and γ3̇P∓ = ∓P∓.

Comparing these results with the λA′3̇ parts of projected Lorentz transformations in (A.13),

we find that, in all cases,

δ′′T ′ = δ′T ′ + δ′L(λA′3̇ = −δnA) (A.24)

This shows that the modified projected transformations are precisely the projected trans-

formations defined by (A.22). (Note also that δ′′T ′ = PδT ′ is in line with the definition of

the induced covariant derivative: ∇′′T ′ = P∇T ′.)

Calculating variations of the bulk fields eM
A, ψM , etc. under the modified projected

susy transformation δ′′(ǫ+), we observe that they have the same form as that found in

the gauge em
3̂ = ea

3 = 0 provided we make the identification (A′, 3̇) ↔ (a, 3̂). (Actually,

8When one imposes the gauge em
3̂ = ea

3 = 0, one finds nA = (0, 0, 0,−1). Then δ(ǫ+)nA = 0, but one

needs a compensating Lorentz transformation to stay in the gauge, and the final result for the modified

ǫ+ transformation has the same (or, rather, isomorphic) form in both approaches. On the other hand, we

needed no modification for the ξm part of the general coordinate transformation in the gauge-fixed case [1]

which is also in accord with (A.21) since ξm∂mnA = 0 in the gauge-fixed case.
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V 3̇ ≡ nAV
A becomes −V 3̂ in the gauge, but this minus sign can be removed by redefining

V 3̇.) It is then (almost) obvious that for the commutator of two modified projected susy

transformations we find a result isomorphic to the result in the gauge, with all the transfor-

mations on the right hand side being again the modified projected transformations δ′′. For

example, in the d = 3 N = 1 case of [1], where only the Lorentz modification was required

for induced ǫ+ susy, the susy algebra in the projective formulation has the following form,

[δ′′(ǫ1+), δ′′(ǫ2+)] = δ′′g.c.(ξ
m) + δ′′(ǫ+) + δ′′L(λA′B′

) (A.25)

with ξm = 2(ǫ2+γ
A′

ǫ1+)eA′
m, ǫ+ = −1

2ξ
mψm+ and λA′B′ = ξmω̂+

mA′B′ . This is the same

form as obtained in [1] in the Lorentz gauge. One subtlety to be clarified is whether the

field dependence of susy parameters plays any role in obtaining this result. A priori one

could expect contributions to the composite parameter of the modified susy transformation

which stem from the field dependence of ǫ+ ≡ 1
2(1 + nAγ

A)ǫ

ǫ̃ = δ′′(ǫ1+)ǫ2+ − (1 ↔ 2) (A.26)

However, if ǫ itself is field independent, then all the field dependence in ǫ+ is due to the

projector P+. Since, as we showed, the projectors are invariant under arbitrary projected

transformations, we find that ǫ̃ = 0. Note, however, that for this argument to be correct we

should never require that ǫ− ≡ 1
2(1−nAγ

A)ǫ vanishes as this would violate the assumption

that ǫ is field independent. We simply concentrate on susy transformations with ǫ+, leaving

ǫ− aside.

Another subtlety in lifting the results found in the gauge em
3̂ = ea

3 = 0 to the

corresponding results in the projective formulation has to do with the determinant of the

induced vielbein (ê2 in the d = 3 case), which we definitely cannot define as the determinant

of em
A′

. Instead we define

ê2 =
√

− det ĝmn, ĝmn = em
A′

en
B′

ηAB (A.27)

This definition gives δê2 = 1
2 ê2ĝ

mnδĝmn = ê2eA′
mδem

A′

which coincides with the lifting

of δe2 = e2ea
mδem

a in the gauge-fixed case (where e2 = det em
a). Therefore, the d = 3

“F +A” formula in the projective formulation is

S =

∫

M

d3xLF −
∫

∂M
d2xê2A (A.28)

We conclude that as far as Lorentz modification of induced transformation rules is

concerned, all results in all dimensions in the gauge em
3̂ = ea

3 = 0 can be recast in the

language of the projective formulation. In the case of local susy in d = 3 there is only

a Lorentz modification, but in the case of local susy in d = 4 one needs also a U(1)A
modification to obtain closure of the gauge algebra. This U(1)A modification is added

after one has deduced the Lorentz modification as discussed in this appendix.
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B. Old-minimal sugra with a U(1)A compensator

The derivation of old-minimal d = 4 N = 1 Poincaré sugra from conformal sugra was

performed in [10] and summarized in [11, 12]. The gauge fields and symmetry parameters

in the conventions of [12] are

hµ = eµ
mPm +

1

2
ωµ

mnMmn + ψµQ+ fµ
mKm + bµD + φµS +AµA

ε = ξmPm +
1

2
λmnMmn + ǫQ+ ξm

KKm + λDD + ζS + ωA (B.1)

(We adhere to these conventions in this appendix; changing (µ,m) → (M,A) and ǫ → 2ǫ

brings us to the conventions used in the main text.)

To derive old-minimal sugra with a U(1)A compensator (OMA sugra, for short) we will

follow the standard derivation with one small (but essential) difference: we will not impose

the U(1)A gauge condition. We start with the conformal sugra multiplet (eµ
m, ψµ, Aµ, bµ)

and a chiral multiplet9

(A0, PRχ0, F0) =

(
1

2
(A0 + iB0),

1

2
(1 + γ5)χ0,

1

2
(F0 + iG0)

)
(B.2)

of U(1)A weight n = 1. Note that under U(1)A transformations with local parameter ω the

supergravity fields and those of a chiral multiplet (A, χR ≡ PRχ,F) with U(1)A weight n

transform as follows

δeµ
m = 0, δψµ =

3

4
iγ5ψµω, δAµ = ∂µω, δbµ = 0

δA =
i

2
nωA, δχR = i

(
n

2
− 3

4

)
ωχR, δF =

i

2
(n− 3)ωF (B.3)

We consider D (dilatations), S (conformal supersymmetry) and Km (special conformal

transformations) as extraneous symmetries and gauge fix them by setting

2A0 = eiφ/2, χ0 = 0, bµ = 0 (B.4)

These constraints are invariant under general coordinate (δg.c.(ξ
µ)) and local Lorentz

(δL(λmn)) transformations provided φ is a scalar. The combined Q,S,Km,D and A trans-

formation of these constraints requires

δA0 ≡ 1

2
ǫχ0R + λDA0 +

i

2
ωA0 =

i

2
A0δφ

δχ0R ≡ PR( /DcA0 + F0)ǫ+ 2A0ζR +
3

2
λDχ0R − i

4
ωχ0R = 0

δbµ ≡ 1

2
ǫφµ − 1

2
ζψµ − 2ξm

Keµm + ∂µλD = 0 (B.5)

where Dc
mA0 = ∂mA0 − 1

2ψmχ0R − bmA0 − i
2AmA0. This is solved by requiring

δφ = ω, λD = 0, ξK
m =

1

4
(ǫφm − ζψm), 2ζR = −A−1

0 PR( /DcA0 + F0)ǫ (B.6)

9Usually one calls the operator 1

2
(1+γ5) the projection operator onto left-handed fermions, but because

in [12] it is denoted by PR, we will also here denote it by PR.
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This tells us that the U(1)A symmetry is preserved provided it acts on φ with a shift,

δA(ω)φ = ω; the D symmetry is broken and can be simply dropped; S and Km symmetries

are broken but play a role in restoring the Q symmetry. The Poincaré susy is given by the

“Q+ S +K” formula [11, 12]

δP
Q(ǫ) ≡ δQ(ǫ) + δS(ζ(ǫ)) + δK(ξm

K (ǫ)) (B.7)

where ζ(ǫ) and ξm
K(ǫ) are given in (B.6). For ζ(ǫ) we find

PRζ = −1

2
PR

(
F̃0 −

i

2
γmÃm

)
ǫ, F̃0 ≡ A−1

0 F0, Ãµ ≡ Aµ − ∂µφ (B.8)

where we note that δA(ω)F̃0 = −3
2 iωF̃0 and δA(ω)Ãm = 0. Defining F̃0 = 1

2(F̃0 + iG̃0) and

extracting the projector PR = 1
2 (1 + γ5), we obtain

ζ = −1

4
(F̃0 + iγ5G̃0 − iγ5γ

mÃm)ǫ (B.9)

Finally, for comparison with the conventional old-minimal (OM) formulation, we define10

S =
3

2
F̃0, P = −3

2
G̃0, Aaux

µ = −3

2
Aµ, a = −3

2
φ (B.10)

which gives for our OMA sugra

ζ(ǫ) =
1

2
Hǫ, H ≡ −1

3
(S − iγ5P + iγ5γ

mBm), Bµ ≡ Aaux
µ − ∂µa (B.11)

This is the key formula that we need. Using the “Q+S+K” rule (taking into account that

all independent fields are inert under K), it is straightforward to write explicitly Poincaré

susy transformations of fields in the OMA sugra multiplet (eµ
m, ψµ, A

aux
µ , S, P, a), and fields

in other multiplets (chiral, linear, vector, etc.).

From (B.6) we observe that φ (or a) shifts under U(1)A, but is inert under Q,S,K.

Therefore, it is inert under Poincaré susy. To understand how this can be consistent with

the usual statement that “two susy transformations yield a translation,” we need to find

the susy algebra for OMA sugra.

The commutator of two Poincaré susy transformations follows from the superconformal

algebra and the “Q+ S +K” rule [11, 12] and we find,11 for OM, OMA and NM sugra,

[δP
Q(ǫ1), δ

P
Q(ǫ2)] = δg.c.(ξ

µ) + δP
Q(−ξµψµ) + δA(−ξµAµ + ǫ[1iγ5ζ2])

+δL

(
ξµω̂µ

mn +
1

2
ǫ[1γ

mnζ2]

)
(B.12)

10With 2A0 = eiφ, we have eF0 = 2e−iφ
F0 or eF0 + i eG0 = 2e−iφ(F0 + iG0). For OM sugra with φ = 0,

this gives S = 3F0 and P = −3G0 [10 – 12].
11The K transformation with parameter ξK

m(ǫ) = 1

4
(ǫφm − ζψm), as well as the field dependence of both

ζ(ǫ) and ξK
m(ǫ), are crucial for the recombination of composite Q,S,K transformations on the right hand

side of the commutator into the composite Poincaré susy transformation δP
Q(−ξµψµ).
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where ξµ = 1
2ǫ2γ

µǫ1, ζ1,2 = ζ(ǫ1,2) and ω̂µ
mn is the usual supercovariant spin connection;

we also introduced the notation [12] = 12−21. Substituting ζ(ǫ) of OMA sugra, see (B.11),

we find

[δP
Q(ǫ1), δ

P
Q(ǫ2)]

OMA
= δg.c.(ξ

µ) + δP
Q(−ξµψµ) + δA(−ξµ∂µφ)

+δL

(
ξµω̂µ

mn +
1

6
ǫ2γ

mn(S − iγ5P )ǫ1 +
1

3
ǫmnµνξµBν

)
(B.13)

The form of the composite U(1)A transformation explains why φ can be inert under susy:

the commutator of two Poincaré susy transformations on φ vanishes because the sum of

the composite δg.c. and δA transformations of φ vanishes. Setting φ = 0 gives the algebra

for OM sugra.

C. Conventions and technical details

Our conventions are the same as in [1] with the obvious extension from d = 3 to d = 4.

(M,N,K) are d = 4 world (curved) indices; (A,B,C) are d = 4 tangent (flat) indices;

spinor indices are always implicit. We use the decomposition M = (m, 3) and A = (a, 3̂)

with m = 0, 1, 2 and a = 0̂, 1̂, 2̂. The space M has boundary ∂M at x3 = 0 with coordinates

xm; points in M have x3 > 0. The gamma matrices γA, γ5 satisfy

γAγB = ηAB + γAB , γ5 = γ1̂γ2̂γ3̂iγ0̂, γABCD = iγ5ǫ
ABCD (C.1)

where ηAB = (− + ++) and ǫ0̂1̂2̂3̂ = +1. It follows that (γ3̂)2 = 1 and (γ5)
2 = 1. Our

spinors are Majorana, ψ ≡ ψ†iγ0̂ = ψTC, where (γ0̂)† = −γ0̂, (γ1̂, γ2̂, γ3̂)† = (γ1̂, γ2̂, γ3̂)

and CT = −C, CγAC−1 = −(γA)T . The spinorial projectors P± satisfy

P± ≡ 1

2
(1 ± γ3̂), P+ + P− = 1, P±P± = P±, P+P− = 0 (C.2)

where we stress that γ3̂ is constant. We decompose spinors as ψ = ψ+ + ψ− where ψ± =

P±ψ. It follows that ψ± = ψP∓. Therefore, for example, φψ = φ+ψ− + φ−ψ+.

General coordinate δg.c.(ξ) and local Lorentz transformations δL(λ) of the vielbein eM
A

and gravitino ψM are given by

δg.c.(ξ)eM
A = ξN∂NeM

A + (∂M ξN )eN
A, δL(λ)eM

A = λABeMB

δg.c.(ξ)ψM = ξN∂NψM + (∂M ξN )ψN , δL(λ)ψM =
1

4
λABγABψM (C.3)

with λAB = −λBA. We use D(ω)M to denote a Lorentz covariant derivative constructed

with connection ωMAB; for example, D(ω̂)MψN = ∂MψN + 1
4 ω̂MABγ

ABψN . The superco-

variant spin connection ω̂MAB is given by

ω̂MAB = ω(e)MAB + κMAB , κMAB =
1

4
(ψMγAψB − ψMγBψA + ψAγMψB)

ω(e)MAB =
1

2
(CMAB − CMBA − CABM ), CMN

A = ∂MeN
A − ∂NeM

A (C.4)
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where ψA = eA
MψM , etc.; ω(e)MAB is the torsion-free connection and κMAB is the con-

torsion tensor. Under local Lorentz transformations δ(λ)ω̂MAB = −D(ω̂)MλAB.

The induced metric on a hypersurface with constant x3 is gmn = em
aena + em

3̂en3.

In general, therefore, em
a is not the induced vielbein. In the gauge em

3̂ = 0, however,

gmn = em
aena and em

a is the induced vielbein. Imposing em
3̂ = 0 implies ea

3 = 0, and

vice versa. In the gauge em
3̂ = ea

3 = 0, we have em
aea

m = δm
n, ea

mem
b = δa

b, e3
3̂e3̂

3 = 1

as well as

γm = em
aγa, γ3 = e3

aγa + e3
3̂γ3̂, γm = γaea

m + γ3̂e3̂
m, γ3 = γ3̂e3̂

3 (C.5)

In addition, ω(e)mab coincides with the torsion-free connection constructed out of em
a

whereas Kmn = ω(e)ma3̂en
a is the extrinsic curvature tensor [1]. Note that under local

Lorentz transformations δ(λ)ω̂ma3̂ = −Dm(ω̂)λa3̂. For the modified susy transformation

including λa3̂ = −ǫ+ψa−, the supercovariant extrinsic curvature is therefore

K̂ma ≡ ω̂ma3̂ −
1

2
ψm+ψa− = Kma +

1

4
(ψmγaψ3̂ + ψaγmψ3̂ − ψmψa) (C.6)

and as the bosonic part is symmetric,12 Kab = Kba, we find that K̂ab = K̂ba. Performing

the following decomposition,

ω̂mab = ω̂+
mab + κ−mab, κ−mab =

1

4
(ψm−γaψb− − ψm−γbψa− + ψa−γmψb−)

ω̂+
mab = ω(e)mab + κ+

mab, κ+
mab =

1

4
(ψm+γaψb+ − ψm+γbψa+ + ψa+γmψb+) (C.7)

we observe that ω̂+
mab is the supercovariant spin connection for the induced vielbein em

a.

(Supercovariant both under ordinary susy transformations and under modified susy trans-

formations.)

Fierzing in d = 4 is done using the following formula

(ηλ)(ǫψ) = −1

4
(ηOjψ)(ǫOjλ), Oj =

(
1, γA,

i√
2
γAB , iγ5γA, γ5

)
(C.8)

where in Oj the Lorentz indices A,B are raised. In addition one uses that, for Majorana

spinors, ǫγA1 . . . γAkψ = (−)kψγAk . . . γA1ǫ and ǫγ5γ
A1 . . . γAkψ = ψγ5γ

Ak . . . γA1ǫ. With

the decomposition A = (a, 3̂), we can write

Oj = (1, γa, γ3̂,
i√
2
γab, iγa3̂, iγ5γa, iγ5γ3̂, γ5) (C.9)

Using γab = −ǫabciγ5γcγ3̂, ǫ
abc ≡ ǫabc3̂ and ǫabkǫ

abc = −2δk
c we find that

Oj = O+
j ⊕O−

j , O+
j = (γa, iγaγ3̂; γ5, iγ5γ3̂)

O−
j = (1, γ3̂; iγ5γa, iγ5γaγ3̂) (C.10)

so that only η+O
+
j ψ+, η−O

+
j ψ− and η+O

−
j ψ−, η−O

−
j ψ+ are nonvanishing.

12Use (C.4) and Cab3̂ = 0, which is the case in the gauge em
3̂ = ea

3 = 0.
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A tensor with complete antisymmetrization in d = 3 indices a, b, c must be proportional

to the d = 3 Levi-Civita tensor ǫabc. For a tensor satisfying Cabc = −Ccba this means

C[abc] =
1

3
(Cabc + Cbca + Ccab) = ǫabcC, C ≡ −1

6
ǫabcCabc (C.11)

Applying this to Cabc = ψaγbψc and using ǫabcγc = iγ5γ
abγ3̂, we find the following identity

ψaγbψc + ψbγcψa + ψcγaψb = 3ǫabcC, C =
1

6
ψaiγ5γ

abγ3̂ψb (C.12)

With these conventions and tricks, let us now perform some of the technical derivations

referred to in the main text. To prove (5.6), we need to work out

ǫ̃ =
1

2
γa3̂ǫ1+(−ǫ2+ψa−) +

3

4
iγ5ǫ1+

(
− 2

3
ǫ2+iγ5γ

aψa−

)
− (1 ↔ 2) (C.13)

Forming a scalar by multiplying with a spinor φ and using γa3̂ǫ+ = γaγ3̂ǫ+ = γaǫ+, we get

φǫ̃ = −1

2
(φγaǫ1+)(ǫ2+ψa−) +

1

2
(φγ5ǫ1+)(ǫ2+γ5γ

aψa−) − (1 ↔ 2) (C.14)

Fierzing this expression into the form ǫ2+Ojǫ1+, we find

φǫ̃ =
1

8
(ǫ2+Ojǫ1+)

[
φγaOjψa− − φγ5Ojγ5γ

aψa−

]
− (1 ↔ 2) (C.15)

Only O+
j survives in ǫ2+Ojǫ1+; γ5 dependent terms in O+

j drop out due to “1 ↔ 2.” The

remaining two objects in O+
j , γa and iγaγ3̂, contribute equally and yield

φǫ̃ =
1

4
(ǫ2+γbǫ1+)

[
φγaγbψa− − φγ5γ

bγ5γ
aψa−

]
− (1 ↔ 2) (C.16)

Using γ5γ
bγ5 = −γb, γaγb + γbγa = 2ηab and ǫ1+γbǫ2+ = −ǫ2+γbǫ1+, we find

ǫ̃ = (ǫ2+γ
aǫ1+)ψa− =

1

2
ξaψa− (C.17)

where ξa = 2(ǫ2+γ
aǫ1+). This proves (5.6).

To prove (5.7), we first find, using same tricks while Fierzing, that

λa3̂(ǫ2+)λb3̂(ǫ1+) − (1 ↔ 2) = (ǫ2+ψa−)(ǫ1+ψb−) − (1 ↔ 2)

= −1

4
(ǫ2+Ojǫ1+)(ψb−O

jψa−) − (1 ↔ 2)

= −(ǫ2+γ
cǫ1+)(ψb−γcψa−) =

1

2
ξc(ψa−γcψb−) (C.18)

Writing ω̂mab = ω̂+
mab + κ−mab as in (C.7), we find from (5.4) that

(λ3)ab = ξcω̂+
cab − ǫ[2+γabζ−(ǫ1]+) + ξcκ−cab −

1

2
ξc(ψa−γcψb−) (C.19)

Using the identity in (C.12) with γ3̂ψb− = −ψb−, we obtain

κcab −
1

2
ψa−γcψb− =

1

4
(ψc−γaψb− − ψc−γbψa− − ψa−γcψb−) = −1

2
ǫabcW (C.20)
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where W ≡ 1
4ψa−iγ5γ

abψb−. Using ǫabcγ
c = iγ5γabγ3̂, we find

ξcǫabc = 2(ǫ2+iγ5γabǫ1+) = ǫ[2+γabiγ5ǫ1]+ (C.21)

This allows to write (λ3)ab in the following form

(λ3)ab = ξcω̂+
cab − ǫ[2+γabζ

′
−(ǫ1]+) (C.22)

where ζ ′−(ǫ+) = ζ−(ǫ+) + 1
2 iγ5ǫ+W . This proves (5.7).

To prove (5.10), we first collect the terms in (5.9) remaining after projection with P−,

δ′(ǫ+)ψa− = −(ǫ+γ
bψa+)ψb− + γc3̂ǫ+ω̂ac3̂ −

3

2
iγ5ǫ+Aa − γaζ+(ǫ+)

+
1

2
γc3̂ψa+(−ǫ+ψc

−) +
3

4
iγ5ψa+

(
− 2

3
ǫ+iγ5γ

cψc−

)
(C.23)

where we used, in particular, that P−γ5 = γ5P+ as γ3̂γ5 = −γ5γ
3̂. Completing ω̂ac3̂ into

the δ′(ǫ+) supercovariant K̂ac = ω̂ac3̂ − 1
2ψa+ψc−, see (C.6), we write

δ′(ǫ+)ψa− = γbǫ+K̂ab −
3

2
iγ5ǫ+Aa − γaζ+(ǫ+) +Q−

Q− ≡ 1

2
γbǫ+(ψa+ψb−) − ψb−(ǫ+γ

bψa+)

−1

2
γbψa+(ǫ+ψb−) +

1

2
γ5ψa+(ǫ+γ5γ

bψb−) (C.24)

Fierzing φ+Q− into the form ψa+Ojψb−, where only O−
j survives (with γ3̂ and iγ5γcγ3̂

doubling the contributions of 1 and iγ5γc, respectively), gives

φ+Q− = (ψa+ψb−)(φ+γ
bǫ+)

(
1

2
− 1

2
+

1

4
− 1

4

)

+(ψa+γ5γcψb−)

(
1

2
φ+γ5γ

cγbǫ+ +
1

4
φa+γ5γ

bγcǫ+ − 1

4
φ+γ5γ

cγbǫ+

)

= (ψa+γ5γcψb−)

(
1

2
φ+γ5(γ

cγb − γcb)ǫ+

)
=

1

2
(φ+γ5ǫ+)(ψa+γ5γ

bψb−) (C.25)

We can absorb Q− by redefining Aa,

δ′(ǫ+)ψa− = γbǫ+K̂ab −
3

2
iγ5ǫ+Âa − γaζ+(ǫ+) (C.26)

where Âa = Aa + 1
3ψa+iγ5γ

bψb−. This proves (5.10).

Finally, to prove (6.2), we first collect the terms in (6.1) which survive the projection

with P+,

δ′(ǫ+)ψm+ = 2D′(ω̂+)mǫ+ − γmζ−(ǫ+) +
1

2
γabǫ+κ

−
mab +Q+

Q+ ≡ 1

2
γaψm−(ǫ+ψa−) +

1

2
γ5ψm−(ǫ+γ5γ

aψa−) (C.27)
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Fierzing φ−Q+ into the form ψa−Ojψm−, where only Q+
j survives (with iγcγ3̂ and iγ5γ3̂

doubling the contributions of γc and γ5, respectively), gives

φ−Q+ = (ψa−γcψm−)

[
− 1

4
(φ−γ

aγcǫ+) +
1

4
(φ−γ

cγaǫ+)

]

+(ψa−γ5ψm−)(φ−γ
aγ5ǫ+)

(
− 1

4
+

1

4

)
(C.28)

so that Q+ = −1
2γ

abǫ+(ψa−γbψm−). Combining with the κ−mab term, we find

1

2
γabǫ+κ

−
mab +Q+ = −1

8
γabǫ+(ψm−γaψb− − ψm−γbψa− − ψa−γmψb−)

= −1

2
γabǫ+

(
− 1

2
ǫabmW

)
= −1

2
γmiγ5ǫ+W (C.29)

with W ≡ 1
4ψa−iγ5γ

abψb−. We used the result in (C.20) and γabǫabc = 2iγ5γcγ3̂. We can

now combine this result with the term −γmζ−(ǫ+) to find

δ′(ǫ+)ψm+ = 2D′(ω̂+)mǫ+ − γmζ
′
−(ǫ+) (C.30)

where ζ ′−(ǫ+) = ζ−(ǫ+) + 1
2 iγ5ǫ+W . This proves (6.2).
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