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ABSTRACT: To construct rigidly or locally supersymmetric bulk-plus-boundary actions,
one needs an extension of the usual tensor calculus. Its key ingredients are the extended
(F-, D-, etc.) density formulas and the rule for the decomposition of bulk multiplets into
(co-dimension one) boundary multiplets. Working out these ingredients for d =4 N = 1
Poincaré supergravity, we discover the special role played by R-symmetry (absent in the
d =3 N =1 case we studied previously). The U(1) 4 R-symmetry has to be gauged which
leads us to extend the old-minimal set of auxiliary fields S, P, A, by a U(1)4 compensator
a. Our results include the “F + A” density formula, the “QQ + L + A” formula for the
induced supersymmetry transformations (closing into the standard d = 3 N = 1 algebra)
and demonstration that the compensator a is the first component of the extrinsic curvature
multiplet. We rely on the superconformal approach which allows us to perform, in parallel,
the same analysis for new-minimal supergravity.
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1. Introduction

Rigid and local supersymmetry (susy) in the presence of boundaries have been studied
before (see references in []), but in most of those studies boundary conditions (BC) were
imposed in order that the action remains supersymmetric in the presence of a boundary.
Often these BC were treated on a par with the BC one gets from the Fuler-Lagrange
variational equations. We are, instead, interested in constructing actions that remain susy
without imposing any BC (“susy without BC”) by adding suitable boundary terms to the
action [[, f]. For rigid susy, the formalism of co-dimension one superfields provides
an easy way to construct bulk-plus-boundary actions that are “susy without BC” [fi, P
In [fl] we showed that the same could be achieved in the local susy case by developing a
boundary-extended tensor calculus for d = 3 N = 1 Poincaré supergravity (sugra). We
found there that the standard d = 3 F-density formula!

1— 1 —
Lr=e3 <F + §¢M’YMX + ZAl/JM’YMNibN + ASg) (1.1)

1Our conventions are summarized in appendix E To avoid confusion with the auxiliary field S in d = 4,
we denote the auxiliary field in d = 3 by Ss.



for a scalar multiplet (A, x, F) interacting with the supergravity multiplet (epr?, s, S3),
combined with a boundary “A-term,” gives rise to a bulk-plus-boundary action (that we
called the “F + A” formula)

sz/ Brlyp — d?zes A (1.2)
M oM

This action is supersymmetric under half of bulk supersymmetry parametrized by
er(z) = (1 +~°)e(x), provided we use modified local Poincaré susy transformations

5(es) = 05 (es) +00(Agg = ) (13)

which close into the standard d = 2 N = (1,0) gauge algebra. (Indices @ and 3 are indices in
flat (tangent) space.) The accompanying (local) Lorentz transformation dr,(X,3) we found
to be needed as a compensating transformation to maintain a particular Lorentz gauge,

em® = €3 =0 (1.4)

This gauge is opposite to the standard Kaluza-Klein gauge choice e3* = e3™ = 0. However,
as we demonstrate explicitly in appendix [d], it is not necessary to impose this Lorentz
gauge. By using projection operators familiar from the Gauss-Codazzi equations [[{], we
define projected induced symmetry transformations that lead to the same results.

We will demonstrate that the program of “susy without BC” works for d =4 N =1
supergravity, provided we use a formulation which maintains the U(1)4 (with “A” for
“axial”) R-symmetry as a local symmetry. New-minimal sugra [ inherits the U(1)4
gauge symmetry from conformal sugra [, but in old-minimal sugra [§] the U(1)4 local
symmetry has been gauge fixed. Thus we relax the U(1) 4 gauge, after which both old- and
new-minimal sugra can be treated on a par. We will find, in particular, that the modified
susy that is preserved by the boundary and which closes into the standard d =3 N =1
gauge algebra has the form

§'(e4) = 6 (€4) + 0 (Ng3(e4)) +da(wles)) (1.5)

where the composite parameters A 3(ey) and w(e) of the Lorentz and U(1)4 transforma-
tion, respectively, depend on the bulk fields only through ,_. This field v,_ is superco-
variant under local €4 susy transformations.

2. The “B problem”

When one tries to extend the d =3 N = 1 results of [[l] to the case of d =4 N = 1 old-
minimal (Poincaré) supergravity, one runs into the following problem. The d = 4 F-density

for a scalar (chiral) multiplet (A, B, x, F',G’) interacting with the supergravity multiplet
(exr™,¥nr, S, P, A39X) reads [f]

1— 1— .
Lr=es|F'+ SPuy" X + ;0ay" ™ (A= i B)gw + AS + BP (2.1)



Under local susy (depr4 = eydns, dvnr = 20pe + ..., 6A = €x, 0B = —Fivsx, etc.) it
varies into a total derivative,

5(e)Lp = 8M{e4 [E’YMX FeyMN (4 - z»yg,B)W} } (2.2)

In the gauge ([.4) and considering only the half of susy parametrized by e = %(1 —i—’y?’)e(az)

with constant 73, the variation of [ M d*zLp gives (we take 22 > 0 in M and the boundary
OM at 23 = 0)

/ d3zes [E+X— + ey (Ve A — i75¢a_B)] (2.3)
oM
where we defined 1, = €, Vm, VYotr = %(1 + 73)1[)& and used E+7§’ = —€,. We also

used that, in the gauge ([4), e3 = ezes (with ez = dete,,® and eq = detepn?)
des = e3(€4v™"ey) and 0A = €. x_, one finds a natural candidate for the bulk-plus-

. From

boundary action

Spia= / d*zLp — d3resA (2.4)
M oM

Its e susy variation cancels the first two terms in (-3) but the B-term remains

0(€4)Spya = d*we3(€1ivs7"Ya-)B (2.5)
oM
This poses a problem as it appears to be impossible to cancel this remaining variation
(without imposing any BC) within old-minimal supergravity.
A simple observation guides us towards the solution of this problem. Namely, the
“F + A” action would be invariant if we could modify the e; susy transformation by an
additional transformation rotating A into B with a composite parameter proportional to
€4+1757%e—. The bulk F-density should then be invariant under such a rotation. Recalling
that old-minimal sugra is a gauge-fixed version of conformal supergravity where such a
U(1) 4 symmetry has been gauge fixed, we reconsider the gauge-fixing procedure and restore
the U(1)4 symmetry. One way of doing this would lead us to the known new-minimal
formulation; another way produces a new version of old-minimal supergravity with an
additional U(1)4 compensator arising as a Stiickelberg (or Goldstone) field.

3. Poincaré sugras preserving U(1) 4

All known d = 4 N = 1 Poincaré sugras follow from the superconformal approach
by combining the gauge multiplet (ens,4nr, Aar,bar) of conformal sugra [ with dif-
ferent conformal matter multiplets serving as “compensator multiplets” [[(-[[2]. Cer-
tain components of these multiplets are gauge fixed to break extraneous superconfor-
mal symmetries (such as dilatations) while the remaining components become auxiliary
fields in the corresponding Poincaré sugra multiplet. Using a conformal chiral com-
pensator multiplet (Ag, Bo, xo0, Fo, Go) one finds the old-minimal (OM) sugra multiplet



(eMA,l/JM,Aj}}X,S, P) with A3 = —%AM, S = 3Fy and P = —3Gy [I(], while using a
linear compensator multiplet (Co, x0, Bas) one finds new-minimal (NM) sugra with multi-
plet (e o, A, B ) [[9).2 However, as we show in appendix [B, one can find further
consistent (extended Poincaré) sugras by relaxing some of the gauge fixing conditions.
Aimed at the problem at hand, we have relaxed the U(1)4 gauge fixing condition
imposed in the derivation of OM sugra and derived an “old-minimal sugra with a U(1)4
compensator” (OMA sugra, for short). Its sugra multiplet is (eas?, ¥ar, Aar, S, P, ¢), where
¢ is the U(1) 4 compensator. Under (Poincaré) susy transformations d(e¢) = 55 (¢), Lorentz
transformations §(\) = d5(AP) and U(1)4 transformations §(w) = d4(w) it varies as

follows (see (B.49))
e, w)p =w (3.1)

so that it is a susy singlet, a Lorentz scalar and a Goldstone boson of U(1)4. As it can
be gauge fixed to ¢ = 0 by a local U(1)4 transformation, this is still a minimal (12+12)
Poincaré sugra.

We have thus two minimal sugras with local U(1)4 symmetry: OMA and NM sugras.
Their (Poincaré) susy transformations are encoded in the “Q + S + K” formula (B.7)

85 (€) = dge) + 6s(C(€)) + Ok (€5 (€)) (32)

where the parameter in the K (special conformal) transformation need not be specified
as all the (independent) fields are inert under it. The key information is contained in the
parameter ((e) of the S (conformal susy) transformation. For OMA and NM sugras it is
given by (see equation (B.11]) for OMA, and equation (3.28) in [[Z] for NM sugra)3

OMA: ((¢)=He, H= —%(5 —iysP +iv7"Ba), By = _g(AM — M 9)
NM: ((e)=He, H= %i%yAéA, By = By(ayn) (3.3)
We state explicitly only the §(e, \,w) transformation rules of ey and vy,
S(e, \wlen™ = ey s + A Peyrp
o(e, \,w)bnr = 2D(W) pre — gi75eAM — ymC(e) + i/\ABWABQ,Z)M + %Z’%?/)Mw (3.4)
They are the same in both OMA and NM sugras, apart from the difference in ((e).
4. Solution of the “B problem”

Both in OMA and in NM supergravity, unlike in the case of OM sugra, it is not useful to
redefine the fields ' and G of a chiral multiplet with weight n into fields £’ and G’ whose

2The auxiliary vector B of NM sugra satisfies a constraint that can be explicitly solved in terms of a
prepotential aasny which introduces an additional gauge symmetry in the gauge algebra. For our discussion,
the introduction of ar/n is not necessary.

3In OMA sugra we can replace (A, ) by (A3, a) = —%(AM7 @); then By = A57° — Opa. Note also
that in appendix [§ the normalization of € is a factor 2 smaller than in the main text.



susy transformations rules are n-independent because in these supergravity theories there
are also chiral U(1)4 transformations left which are n-dependent. Thus we work in both
these cases with the fields F' and G, and use the same conformal F-density formula?

1— 1— .
Lp=eq|F+ §¢A7AX + ZT/JAWAB(A - 2753)71)4 (4.1)

Under U(1) 4 the fields appearing in this density transform as (cf. (B.3))

Sep™ =0, VRS zi’waw’ OF = — <n g 3>WG
0A = _EWB’ 0B = +§wA, ox = Z<§ - Z)’stw (4.2)

and one can check that Lp is U(1)4 invariant, §(w)Lp = 0, provided n = 3. Under
(Poincaré) supersymmetry d(€) = 55(6) it transforms into a total derivative®

0(e)Lp = 8M{e4 [EWMX +eyMN (A - i75B)¢N} } (4.3)

which is of exactly the same form as in OM sugra, see (R.3). From here on the discussion
of section | applies, but now we can resolve the problem encountered there by an extra
(e4)-dependent U(1) 4 transformation. For the “F + A” action in (R.4)

Spia= / d*zLp — / d3zesA (4.4)
M oM

the combined (€4 ,w) = 55(@.) + 04(w) variation gives

3
(5(6+,W)SF+A = / d3x63 |:(E+i’Y5’Ya1/Ja_)B + §WB (45)
oM
which vanishes provided w(ey) = —%(arz"yg,’y“l/}a_). This way the “B problem” is solved.

5. (Modified) induced susy transformations

Let us summarize what we have learned so far. First, in the presence of a boundary half of
susy is (spontaneously) broken and for this reason we consider only d(ey) [[l]. Second, in the
gauge em3 = e,> = 0 we need a compensating Lorentz transformation &(\ w3 = —€Va) ;
another, gauge-independent reason for this modification is explained in appendix [A]. Third,
from the resolution of the “B problem,” which arose in the construction of the supersym-

metric bulk-plus-boundary “F + A” density formula, we found that we need a further

‘As F' = F — 2(SA+ PB), G’ = G — 2(5B — PA) [EL the Poincaré F-density (@) of OM sugra
coincides with the conformal F-density (@) when n = 3.

®Note that 65 (€)Lr = 6q(€)Lr as Lp is K-invariant for any n (all fields in £p are K-invariant) and
S-invariant when n = 3. (Under S-supersymmetry, A = 6B = 0, 6x = n(A + iysB)¢, 6F = (1 — n)Cx,
5G = —(1 — n)Zi’ysx and 561\/1A = 0, 51/)1\/[ = —’7]\/14-, 5A]\/[ = Zi’ysi/)j\/[, 5bM = —(1/2)21[)1\/1; see , @]) For
n =3 L is also Weyl invariant. (Under Weyl transformations, JA = nAAp, idem §B, dx = (n+1/2)xAp,
oF = (n-‘rl)F)\D7 idem G, and further (5€MA = —eMA)\D7 oYm = —(1/2)1/)1y1)\D7 60An =0, 0by = aM)\D.)



modification, an additional U(1)4 transformation é(w = —§E+i’y5’y“1/1a_). Putting all the
pieces together, we claim that the following ”Q + L + A” formula

§'(e) = 0g(ex) + 01 (%3(%) = —E+¢a—) + 04 (W(€+) = —g(aWﬂa%—)) (5.1)

gives the correct (modified) induced susy transformation which one should consider as sur-
viving in the presence of the boundary. By “correct” we mean that this susy transformation
closes into the standard d = 3 N = 1 susy algebra, as we now explicitly demonstrate.
From the superconformal algebra and the “Q + .5 + K” rule, we find that the commu-
tator of two Poincaré susy transformations is given by (see (B.13) with e rescaled to 2¢)

(00 (e1), 3G (e2)] = dg.e.(€™) + 5 ( - %&%) + 0™ + 7 P Gy)
+04(—EAu + 2e0i75Cy) (5.2)

where €4 = 2e9y4er, &M = €4, M (1 5 = ((e1,2) with ((e) given in (B-), and [12] = 12—21.
From the “Q) + L + A” form of the (modified) induced susy transformation we further find

[ (€14),0"(e24)] = 0g.c. (€M) + 65 (€3) + SL(A"F) + G (ws)

1 1 3.
€3 = —§§A¢A + —’YAB€[1+)\2}AB + 7560+

4
A8 = ¢C5AP + E[1+’YABC2} + )\[2AC)\1]CB + 5/(6[1+))\2}AB
wy = —EX A + 2episCy + 8 (s Jwy (5.3)

where we took into account the field-dependence in composite parameters of Lorentz and
U(1)4 transformations and denoted (o = ((eay), etc. Using A*(e;) = 0 and the form of
A3(ey) and w(ey ) in (.1)), we find for the composite parameters

€ =217 €y), € =2@1177) =0 = M=%, £=0

1 ~ ~ ~ ~
€3 = _56[11!)& + €, )‘3AB = gcwCAB + >\AB7 w3 = _gaAa +w (54)

where we separated parts that need more work,

o)}
Il

7o) + Simseswlen) — (1 2)

Aab = —E217abG-(€14) — Agz(e24) Apz(ery) — (1 2)

3 = e (e1s) — B0 (e )as — (1 2)

w = —284iy5¢(e14) — §€2+1’Y5’Ya5/(6+)1/1a— - (1<2) (5.5)

After some Fierzing, we find (see appendix [J)

~ 1 1 1
€= §5a¢a— = €= —§5a¢a+ = €34 = —gfa¢a+, €z— =0 (5.6)



e (Where E\u:gab depends only on v,,1 and x_ , is the part

Writing Oy = @;ab + K
of the contorsion that depends only on ,,_), Fierzing and using that the complete
antisymmetrization of three d = 3 indices must be proportional to the d = 3 Levi-Civita
tensor, we find (see appendix [d)

~ / / 1 Ui a
g™ = E0T™ —Fuy™leny), ((ey) = Cler) + girses (Vv ™) (5.7)

In the next section, we will further simplify this expression using the explicit form of ((e)
for OMA and NM sugras.

To work out )\3“3 and w3, we need first to determine &’ (€ )1),—. As a warm up exercise,
we evaluate ¢’ (e4)e,* and &' (e4)e,™. We have

8 (ex)em® = €7 Pm + ABen® = €7 s
5/(€+)€am = —E+’7mlf)a + )\agegm
= & (Ye™ + 7 ™)a — (E41ba—)es™ = —E1 1 ares™ (5.8)

where we used e,,3 = 0, which is our gauge choice (IL4); but note that e3™ # 0. For §'(e;)
of P, = e, P_1y,, with P_ = %(1 —~3), we have, using (B.4),

1. o, 1.
6/(64-)1/}(1— = [6/(6+)eam} wm— + eamP— |:2 <8m + Zwmcbfy b + §wm03fy 3) €+

3 1 p 3.
—52756+Am — YmC(ey) + 5%31%)\ Ser) + 1275¢mw(6+)} (5.9)

As P_e; =0, the term with 0,,e, is projected out. This shows that 1, is supercovariant
under ¢’(e4) susy. We expect supercovariant quantities to transform into supercovariant
quantities, and we find that this is indeed the case (see appendix [J):

.3
§'(ex)tha— = ey Kap — S 1se+Aa — YaG+(€+) (5.10)

where IA(ab is the supercovariant extrinsic curvature tensor and A\a is the supercovariant
d = 3 vector part of the U(1)4 gauge vector Ay,

~

I - -
Kab = W3 — §¢a+¢b—, Aa = Aa + §¢G+Z’Y5’Yb1/1b— (511)

We emphasize that the supercovariance is with respect to the (modified) induced susy
transformation ¢’(e4 ); for example,

2 .
8 (er)An = da(wler))Ag + -+ = Oawler) +--- = —§(5a3+)2757b¢b— + ..

leads us to fTa (as gt = 20464 +...).
For A, ;3 we now have

_ _ = 3. -~
A = —€247"Ci(e1y) — ey |1y Kap — 5275€1+Aa —Yalt(€14)| — (1 = 2) (5.12)



We see that the two (-dependent terms cancel while ga—dependen‘c term vanishes due to
“l1 «» 2.” Using £{* = 2(€24.7%14) we find A 3 = —€YK 4, while using Ky, = Kj, we obtain
the final result

(0)as = ~€ (Ria — ) = 56 Tpetba = Agyless) (513

where A 3(e1) = —€11,— and €34 = —%ﬁbi/)bJr according to (5.4).
The calculation of w3 is equally simple. We start with

. 2_ . -~ 3. ~
w = —2e4175C+ (€14) — §€2+W57a Ver Koy — 5175€1+Aa = Yalt(e14)| — (1 < 2) (5.14)

Again, the (-dependent terms cancel, now thanks to v%v, = 3. The term with IA(ab vanishes
due to Ky, = Kp, and “1 < 2.7 Using v57%y5 = —v%, we find w = £*A,. This finally gives

w3 = ga(A\a - Aa) = %ﬁa@aﬂVﬂbwb—) = w(€3+) (515)

where w(ey) = —2€1iv°Ph— and €34 = —3EMay.
We now collect our findings. For the commutator (p.3) of two (modified) induced susy
transformations, we obtain

[0 (€14), 8 (€24)] = Gg.c.(E%a™) + 65 (€34) + SL(AF) + 61(Ay3(€3+)) + 5a(w(est))(5.16)

where £ = 2(€217%14), €3+ = —3E%er and A3 is given in (B-]). We observe that the
(unmodified) Poincaré susy, off-diagonal Lorentz and the U(1)4 transformations on the
right hand side recombine into the (modified) induced susy transformation ¢’ (es+) and the
result is simply

(6 (€14), 6" (€a4)] = Og.c.(E%€,™) + & (— %g“zﬁH) +01,(A80) (5.17)

Up to some final simplification of )\gb and decomposition of 4-component spinors e, and
4 x 4 gamma matrices v in terms of 2-component spinors and 2 x 2 gamma matrices, which
will be done in the next section, this is the correct d = 3 N = 1 susy algebra confirming our
claim that ¢'(ey) in (5.])) is the correct expression for the induced susy transformations.

6. Induced sugra multiplets in OMA and NM sugra

Our “F + A” action formula ([t4) gives one possible ¢ (e )-supersymmetric bulk-plus-
boundary completion of the bulk F-density formula. However, other possibilities exist
because we can add further, separately & (e )-supersymmetric, boundary actions. To con-
struct such boundary actions and to obtain an explicit boundary F-density formula, we
need first to find the induced sugra multiplet.

We have found already that ¢’ (e )en® = €47%Ym+. To identify the combination of bulk
fields which plays the role of the d = 3 auxiliary field S35 in the induced sugra multiplet



(em® m+,S3) we need to work out &' (e )Ypt. Using tmy = Py, Py = (1 + ~+3)
and (B.4)), we write

1. 1 5
&' (e4)¥ms = Py [2 <<9m + Zwmab’yab + §wma37a3> €

3. 1 . 3.
—§Z’Ysé+Am — YmC(eq) + §’Ya3¢m)\ Ser) + ZZ’Ysl/me(@r) (6.1)

Now it is the &, 3 and A,, dependent terms which are projected out. For the remain-
ing terms, after some algebra very similar to that used in deriving (f.7), we find (see
appendix [J)

8 (€ )bme = 2D (@ )mey —ymCl(e4),  ('(e) = Cleq) + %i’YseJr@a—i’Ys’Yabl/fb—) (6.2)

where D'(@™"),, is the induced supercovariant derivative,
~ 1. ~
D/(w+)m = 8m T Zw;ab/}/ab7 w;ab = w(e)mab + K’;‘?—mab (63)

Using the explicit form of ((e) for OMA and NM sugras, see (B.3), we find

OMA: Cy(er) = —5(S+ 57" Bader, C-(e4) = zirmes (P — By)
NM: Ciler) = gimres Ba Ce4) = givses By (6.4)
Therefore, in both cases we can write (’_(e1) = —3iys€4+93 so that
5 (e Yot = 2D(@ ey — 5ir57mes S (65)

where S5 is given by
2 -
OMA: 3= —3(P~By)~W. W= 0, iv7"vn-
NM: S3=—Bs—W (6.6)

Note that W is supercovariant (as t¢,_ is supercovariant) under ¢'(e;). Note also that
plugging ¢’ (€4) = —3iy5e+5; into (B-7), we find

AP = €T + (41757 e14) S (6.7)

To establish the connection with the d = 3 expressions as given in [[l], we now introduce
a decomposition of 4-component spinors 1+ and 4 x 4 gamma matrices 7%, v, 75 into 2-
component spinors 1 2 and 2 X 2 gamma matrices 7

(™ 3 (10 ([ (0
) =68) =) ()

u 0 A% u ~ab 0 ‘ 0—1

v :<¢Y‘a’}£)> = ,Yb:<70 ﬁ“b>’ z’yg,:(l 0> (6.8)



where 5 = ’yi’yéfy?’z"yé with 42 = 1, and we require that Fabe = +€a53, For Dirac conjuga-

tion we have

U=l = (B0, ¥1), Prp =000 (6.9)
Using this decomposition with e = <€01>, €1+ = <€(1)1> and ey = <€Sl> we obtain

& (e1)em® = €1V Ym1

- 1.
& (e1)thm1 = 2D (@Y ) mer + =Amer1Ss

2
)\gb = f%iab + (Egﬁ“bell)Sg (610)
where fu,lmb depends only on e,,* and ,,,17. We observe that this is exactly the structure

of d = 3 expressions. Therefore,

(em®, Ym1, S3) (6.11)

is indeed the correct d =3 N = 1 (Poincaré) sugra multiplet, and ¢’(e1) indeed closes into
the standard d = 3 N = 1 (Poincaré) susy algebra,

[ (€11). &' (e21)] = By (%ea™) + 6’( - %swal) + 00 (€D + (€27 Per)Ss) (6:12)

where £¢ = 2(521;}7&611).
For a (composite) d =3 N = 1 scalar multiplet (A, X, F) on the boundary, we can now
write a (separately ¢’(e1) supersymmetric) F-density

~ T 1— ~Sa~ 1 ~a A
Lr = e3 <F + 57%17 X + ZAT%W Py + A53> (6.13)

This boundary F-density formula, in conjunction with the “F + A” formula ([.4), provides
means to construct general §' (e ) supersymmetric bulk-plus-boundary actions:

S = / d*aLy — BPresA+ | dPalp (6.14)
M oM oM

7. Extrinsic curvature multiplet in OMA sugra

The U(1) 4 compensator ¢ of OMA sugra has not appeared explicitly in the discussion of
the induced supergravity multiplet. However, it becomes an essential part of the extrinsic
curvature multiplet of OMA sugra, as we now demonstrate.

Although ¢ is a susy singlet under 55(6) transformation of OMA sugra, see (B.1)), it is
not a singlet under the (modified) induced susy transformation ¢’ (e, )

2 .. s
(1) = wley) = —§E+W57 Yoo = 0(er)a =iy Yo (7.1)
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where a = —3¢. On the other hand, from the result for §'(e; )1, in (F-10) and the explicit
form for (4 (e4) in OMA sugra in (6.4), we have

.3 1 .
&' (e4)tae = Ver Kap — FiserAa + 5%(5 +iv57"By) e (7.2)

Contracting with v* and using y*y, = 3 and ’y“’ybf?ab = n“bl?ab =K , we find

ﬂaxwmhﬁ4k+5kpm%wa(i&+30 (7.3)

2
According to (Bd) and (B-11), B, = —3A, — 0,a and Ay = A, + %Eﬁi’yyybl/}b_, which
gives

gﬁa + B, = —0,a + %Eﬁz’yg,’ybwb_ = —ﬁaa (7.4)
where Dga is the ' (e4+) supercovariant derivative of a. Therefore,
8 (e4) (" ¢pa) = (K + S)ey — iv57 e Daa (7.5)
Converting to the 2-component notation of ([.§), we finally find that
§'(e1)a = @7 a2, &'(€1)(T%a2) = (K + S)er + 71 Daa (7.6)
where ZA)aa = 0ya — %Eaﬁbd}w. This shows that
(@, 3%%a2, K +5) (7.7)

is a standard d = 3 N = 1 (Poincaré) scalar multiplet. As it contains the trace K of the
(supercovariant) extrinsic curvature tensor K, b, We call it the extrinsic curvature multiplet.
Therefore, we found that the U(1)4 compensator a (or ¢) plays a geometrical role: it is
the first component of the extrinsic curvature multiplet.

8. Conclusions

To summarize, we have extended the program of “susy without BC” [[l] tod =4 N =1
Poincaré sugra. The new ingredient of the d = 4 N = 1 (superconformal) algebra compared
to the one in the d =3 N =1 case considered in [lf] is the U(1)4 R-symmetry. We found
that this symmetry plays a crucial role for the bulk-plus-boundary supersymmetry. Bulk
sugra must have the local U(1)4 among its symmetries for the program of “susy without
BC” to work. This was demonstrated explicitly on the example of old-minimal (OM) sugra,
where the U(1)4 has been gauge fixed and correspondingly the “B problem” arose in the
attempt to make the bulk F-density supersymmetric in the presence of boundary.

To resolve this problem with only a minor deviation from the OM sugra set of auxiliary
fields, we have introduced a U(1)4 compensator ¢ (or a = —2¢) while at the same time
restoring the role of A3/ (or rather Ay = —%Aﬁ}}x) as the U(1)4 gauge field; we call this

new version of supergravity the OMA sugra.
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Having restored the local U(1)4, we managed to complete the “susy without BC”
program. The resulting bulk-plus-boundary action formula is formally the same “F + A”
formula as for the d = 3 N = 1 case, but the (modified) induced susy transformation
8’ (e4) contains, in addition to 55 (e4+) and the (compensating) Lorentz transformation
dr(A3(ex) = —€41q—) (both present in the d = 3 case), also a particular e, dependent
U(1)4 transformation, d4(w(ey) = —3€4iy57"Pq—). The key check that ¢(e;) has been
correctly identified came from showing that the commutator of two such transformations
closes into the standard d = 3 N = 1 (Poincaré) susy algebra. This also allowed us to
identify a subset of fields of bulk d = 4 sugra as the fields of the standard d = 3 sugra
multiplet. This multiplet could then be straightforwardly used to construct separately susy
boundary actions using the standard d = 3 F-density formula.

In addition to the induced sugra multiplet, we have identified the complementary
extrinsic curvature tensor multiplet and discovered that the compensator ¢ (or rather
a) is the first component in this multiplet. This is an example of a general phenomenon:
certain pure gauge bulk degrees of freedom may turn into physically (or even geometrically)
relevant fields in the presence of a boundary. (We observed another such example in the
(rigidly susy) Chern-Simons theory in d = 3 [f].)

The analysis of new-minimal (NM) sugra, another Poincaré sugra with the local U(1) 4
preserved, was performed in parallel with that for OMA sugra. We intend to present several
applications of our formalism in both OMA and NM sugra in a later publication.

Finally, in appendix [A] we discussed how the same analysis can be performed without
ever imposing the Lorentz em?’ = ¢,° = 0 gauge but using projection operators. These
projection operators resemble the operators used in the derivation of the Gauss-Codazzi
equations for induced curvatures, but we needed to extend this formulation to the case of
vielbeins instead of metrics. We found that working with those projection operators gives
results which are isomorphic to working in the gauge, and since the latter procedure is
much simpler, we decided to use in the main text only the gauge-fixed approach.
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A. Projective formulation

In this appendix we demonstrate how the modification of €4 susy by an off-diagonal Lorentz
transformation, see (b)), arises in a geometrical approach (that we call “projective for-
mulation”) where, instead of imposing the gauge ([.4), we work with projected indices
and projected transformations. There is a simple correspondence between objects (such
as the induced vielbein, etc.) in the “gauge-fixed” and “projective” formulations that will
become clear as we proceed. Once this correspondence is established, the results in the
two formulations become isomorphic.
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The projective formulation is the covariant formulation where geometrical objects re-
lated to boundaries (or hypersurfaces) such as the induced metric (the first fundamental
form), the extrinsic curvature (the second fundamental form), the induced covariant deriva-
tive, etc., are defined [f] using the projector PyN = 63N — nayn®Y where nyy is the (unit,
outward pointing) normal to the boundary. In applications to General Relativity it is suffi-
cient to work with tensors having world indices (M, N); however, when fermions are present,
one must also introduce tangent vector indices (A, B) and spinor indices («, (3). The corre-
sponding projective formulation has been developed and applied before (see e.g. [[L3]), but
to the best of our knowledge the extension to vielbeins and projected susy transformations
(see below) have not been discussed in the literature.

First of all, we note that using a projective formulation for world indices is not needed
for our purposes. We can freely choose our coordinates 2 in such a way that the boundary
OM is at 23 = 0 and the space M is “to the right” of IM (i.e. z3 > 0 for points in M). This
choice in no way restricts the local parameter £ (z) of general coordinate transformations.
Making this choice, our normal ny; and its tangent space analog n4 = e4™ny are given by

= (0 ) = = (A1)
933 933

where the normalization follows from gM Nouny = nABn anp = 1 and the minus sign
ensures that the normal is outward pointing. We define the following projectors for

tangent vectors and spinors6

1
PAB = 5AB — nAnB, NAB = nAnB, P = 5(1 :I:nA’yA) (A.2)

where the spinor indices of P+ have been suppressed. The projectors satisfy the standard
properties (PyB + NyB =048, P, + P_ =1, PABPg® = P4, P\®Np?4 =0, P,P_ =0,
etc.) and allow a decomposition of Lorentz vectors V4 and spinors ¢ into “parallel”
(Var,2p4) and “normal” (V;,v_) components

Va=Va+Vy, Va=PiPVe, Vi=Na"Vp ¢=1vs+v¢_, ¢o=Pup (A3)

We also define V; = nAVy so that Vi=mnaVs.

Applying this formalism to the Lorentz index of the vielbein ey 4

= (em?,e34) and
its inverse eq™ = (ea™, e A3), we immediately find two identities

A, 3
; em’te
em3 = emAnA S - 0
433
ea’ = PaBep® = —\/¢BPsPng =0 (A.4)

ABe

. o~ / /
Defining Gmn = em” e,® nap and ™" = nBey™ep™ where

!
em? = enPPpA, ea™ = PyBep™ (A.5)

5Tn local superspace there is a distinction between world space spinor indices and tangent space spinor
indices. However, for spinors defined in z-space, one identifies the two concepts (by taking the “spinor
vielbein” to be unity) and speaks simply of “spinor indices.”
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a short calculation shows that g, = emen B NAB = Gmn Which is the induced metric at a

hypersurface with constant 3, whereas g™ = PABe Mep™ = g™ — (¢™3¢™3 /¢33 satisfies

A" can be called

7

§mk§k" = J,," and is thus the inverse of the induced metric. In this sense e,,
the induced vielbein and e /™ its inverse (although both are not even square matrices).

In General Relativity, given a bulk (world space) tensor T' and the bulk covariant
derivative Vs, we have two candidates for the induced (“hypersurface compatible”) co-
variant derivative of the corresponding projected tensor 77 = PT,

V'1T' = PVT, V'T'=PVT (A.6)

where “P” is a symbolic projector whose precise form depends on the index structure of
the tensor to which it is applied. For T}, = Ty = Py VT, we have

T = PN Py MV Ty,

VK/[TN’ = PNNlpMMlle (PN1N2TN2) (A7)
Defining the extrinsic curvature tensor as Ky y = —PMMlPNvaNlan = Ky (see [,

EI]), we find a relation between both derivatives
WTn = VT + Ky (n*Tx) (A.8)
We used PMM1PNN1VN1PM1K = Ky nn’S, which in turn implies
W PNE = PN Py M (Vg P, B P, B =0 (A.9)

Thus the projector Py commutes with the projected derivative V’. Since V/ = V” on the
projector, it commutes with both V/ and V”: V/P = V”P = 0. Similarly, if the original
tensor T is already projected, T'= PT, then V'T = V"T (which may be the reason why
V'’ and V" are usually not distinguished [H]).

We now use this approach to define projected transformations. (Recall that we use
only projectors for tangent space vector and spinor indices; world space vector indices
are simply decomposed as M = (m,3).) Given a transformation ¢, defined for a bulk
(Lorentz) tensor T', we define, for a projected tensor 7" = PT, the corresponding projected
transformation ¢’ as follows

§'T = P§T (A.10)

where P is the identity for scalars, or any of P4Z, NsB, Py or their tensor products for
tensors and spinors. For example, §'T g = PyATNgB 0T 4, B, - It immediately follows that
for any transformation §, the corresponding projected transformation ¢’ of the normal
vector ng = NaBnp vanishes

na=NsBéng =0 (A.11)

"If one does not make the M = (m,3) decomposition, but uses both world space and tangent space
projectors, the induced vielbein is Py en® Pp?. This is a square matrix but with vanishing determinant.
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A

where we used ndn4 = 0 which follows from the normalization condition nn4 = 1. One

can similarly prove that all projectors are invariant under (i.e. commute with) the projected
transformations

§'(PaB,NAB, PL) =0 (A.12)

For example, 0’ Py = Py(6P.)Py = 3(6na)(PryAPy) = 2(nona) Py = 0 where we used
nén4 = 0 and the identity Pyy3 Py = +n4 Py which follows from Pyy? = ’yAPjF + nA,

For projected Lorentz transformations we have, according to our definition in ([A.1Q),
§' (AN Var = P4BS(A\)V = PABACV, ete. Tt is straightforward to show that

§NVar = AP Vi + AaVy, 8NV = A Vi

1 I/ 1 14
6/(A)1/}:|: = Z)‘A B ’YA’B’T/}:I: + 5)\/4 3’YA/3¢:F (A13)
where y4 = PaPyp and 75 = nv4. As a consequence of {v4, v} = 2145, we find that
(AP =P, [y =0, {14} =2 (A.14)

(Note that VA" = VBPgA = PABV = pABVy while V3 = naVA = ndVy = V3.)

Let us now turn to the projected supersymmetry transformations. We define parame-
ters e+ by e+ = Pie which yields ’ygei = +e4. Note that e4 are field-dependent. Starting
from &(e)epr = ey, we find for ¢ (e, ) = Pd(e,) acting on the projected parts of the
vielbein ep4 the following results

(e)em® =T Ymy,  Oer)em® = —Fpthm-
& (ex)es? =y ey, &' (€4 )es® = —eqihs (A.15)

At this point we note that we have run into a problem: our projected susy transformation
does not preserve the identity e,,> = eming =0 of (@)' On the other hand, it is still true
that 6(e; )en® = 0. It is easy to understand what is going on from the following identity:

5/em3 = nade, = 5em3 — e A0na = 5em3 — e ona (A.16)
For a general variation & of ng = —e43/1/¢33 one finds
PyBéeg?
Sy = A B (A.17)
433

which gives d(e)nyg = —ey34h 4 and therefore 0(ex)na = €44 —. (Note that this is con-
sistent with & (e, )na = NaBd(ey)np = 0.) Now it is clear that & (e4)em> # 0 is due to
d(e4)na # 0 even though 5(e+)em3 =0.

The identity em3 = 0 is also not preserved by the projected Lorentz transformations

as §'(A)em> = —em?' Aa3. For a combined transformation &' (e, \) = &'(¢) + 8'(\) we find

5 (e, Nem® = —em™ <>\A,3 + 5(e)nA) (A.18)
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Therefore, preservation of em3 = 0 forces us to modify the projected transformations by
adding a compensating Lorentz transformation with parameter A 45 = —dn4. For €4 susy
this leads to the following modified projected transformation

0" (e) = o'(ex) + 0, (Awa(es) = ~e4tbar ) (A.19)

Similar modifications are required for all other projected transformations. Since under
Lorentz transformations 6(A\)ng = AaPnp = As3, we find that

§"Aarp) =68 Aarp), (5"()\A,3) =0 (A.20)
whereas for general coordinate transformations it follows from §(&)ng = EM Oy thatd
6"(6) = 8'(&) + 0, (Mg = —€¥Onima) (A.21)

Having come so far, let us ask what happens if, instead of §'T" = PJT, as in (A.10),
we define an (alternative) projected transformation by

§'T' = PsT' (A.22)

where T" = PT. Obviously, we have §"T" = §'T" + (P§P)T. (Note that &'P = P(6P)P
in (JA.19) vanishes, but, as we shall show, PJP is nonvanishing.) Writing this out more
explicitly for the basic projected tensors and spinors 7" = (Var, V4, %+ ), we find

§"Var =8'Var + (PaBoPs%\Ve,  PsBoPRC=—(PaPong)n®=—(dn4)n"
8"V =08V + (NaPSNg)We, NaPIN©=nanPnpon®=n,on®

§"pr = 6'1ps + (PL6PL)1p, Pi6Py =Py < + %571 Ay“) = —%(m APy (A.23)

where we used P4Bnp =0, nAdony = 0, nBnp =1, PiyA = VAPJF +n4 and 73P3F = FPr.
Comparing these results with the A ;.5 parts of projected Lorentz transformations in (A.13),
we find that, in all cases,

§'T" = 8T + 6 (A g = —0na) (A.24)

This shows that the modified projected transformations are precisely the projected trans-
formations defined by ([A.29). (Note also that 6”7 = P#T" is in line with the definition of
the induced covariant derivative: V'T" = PVT".)

Calculating variations of the bulk fields ep;?, ¥as, etc. under the modified projected
susy transformation §”(e;), we observe that they have the same form as that found in
the gauge e,,° = e, = 0 provided we make the identification (A",3) « (a,3). (Actually,

8When one imposes the gauge em® = ed® = 0, one finds na = (0,0,0,—1). Then d(e+)na = 0, but one
needs a compensating Lorentz transformation to stay in the gauge, and the final result for the modified
€+ transformation has the same (or, rather, isomorphic) form in both approaches. On the other hand, we
needed no modification for the £™ part of the general coordinate transformation in the gauge-fixed case [ﬂ]
which is also in accord with ( since £"Omna = 0 in the gauge-fixed case.
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V3=n AV 4 becomes —V3 in the gauge, but this minus sign can be removed by redefining
V‘é’.) It is then (almost) obvious that for the commutator of two modified projected susy
transformations we find a result isomorphic to the result in the gauge, with all the transfor-
mations on the right hand side being again the modified projected transformations §”. For
example, in the d = 3 N = 1 case of [, where only the Lorentz modification was required
for induced e, susy, the susy algebra in the projective formulation has the following form,

6" (e14), 6" (€24)] = 8y . (E™) + 0" (e4) + 6L (AYF) (A.25)
with €™ = 2(617Y €14 )ea™, €4 = —2E™ppy and Aarp = EMG; 4 . This is the same

form as obtained in [f]] in the Lorentz gauge. One subtlety to be clarified is whether the
field dependence of susy parameters plays any role in obtaining this result. A priori one
could expect contributions to the composite parameter of the modified susy transformation

which stem from the field dependence of €, = %(1 +nav)e
e=06"(e14)e2r — (1 2) (A.26)

However, if € itself is field independent, then all the field dependence in €4 is due to the
projector P,. Since, as we showed, the projectors are invariant under arbitrary projected
transformations, we find that € = 0. Note, however, that for this argument to be correct we
should never require that e_ = %(1 —nav4)e vanishes as this would violate the assumption
that € is field independent. We simply concentrate on susy transformations with e, leaving
€_ aside.

Another subtlety in lifting the results found in the gauge em3 = ¢,° = 0 to the
corresponding results in the projective formulation has to do with the determinant of the
induced vielbein (€3 in the d = 3 case), which we definitely cannot define as the determinant
of emA,. Instead we define

é\2 =V - det amna amn = emAlenBlTIAB (A27)

This definition gives dey = %é\gﬁm"é@\mn = Eyeq et which coincides with the lifting

a

of deg = ege, ey, in the gauge-fixed case (where ea = dete,,®). Therefore, the d = 3

“F 4+ A” formula in the projective formulation is
S = / BrLp — / d?ze, A (A.28)
M oM

We conclude that as far as Lorentz modification of induced transformation rules is

3 = ¢,3 = 0 can be recast in the

concerned, all results in all dimensions in the gauge e,
language of the projective formulation. In the case of local susy in d = 3 there is only
a Lorentz modification, but in the case of local susy in d = 4 one needs also a U(1)4
modification to obtain closure of the gauge algebra. This U(1)4 modification is added

after one has deduced the Lorentz modification as discussed in this appendix.
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B. Old-minimal sugra with a U(1) 4 compensator

The derivation of old-minimal d = 4 N = 1 Poincaré sugra from conformal sugra was
performed in [[[(] and summarized in [, [J]. The gauge fields and symmetry parameters
in the conventions of [[J] are

1 _ _
by = € P+ 503" Mo + 0, Q 4 fu" Ko+ buD + 3,8 + A, A

1 _
e = " P+ GA™" M +€Q + ERKom + ApD + TS + wA (B.1)

(We adhere to these conventions in this appendix; changing (u, m) — (M, A) and € — 2¢
brings us to the conventions used in the main text.)

To derive old-minimal sugra with a U(1) 4 compensator (OMA sugra, for short) we will
follow the standard derivation with one small (but essential) difference: we will not impose
the U(1)4 gauge condition. We start with the conformal sugra multiplet (e,™,1,, A, by)
and a chiral multiplet?

1 1 1 .
(Ao, Prxo, Fo) = <§(Ao +iBy), 5(1 + ¥5) X0, §(Fo +zGo)> (B.2)

of U(1)4 weight n = 1. Note that under U(1)4 transformations with local parameter w the
supergravity fields and those of a chiral multiplet (A, xg = Prx,F) with U(1)4 weight n
transform as follows

de,™ =0, 0, = %’wawuwa 0A, = 0w, ob, =0
i An 3 i
0A = §nwA, OXR = Z<§ - Z)‘UXR’ OF = 5(” —3)wF (B.3)

We consider D (dilatations), S (conformal supersymmetry) and K, (special conformal
transformations) as extraneous symmetries and gauge fix them by setting

240 = €2, x0=0, b,=0 (B.4)

These constraints are invariant under general coordinate (dq. (£#)) and local Lorentz
(6, (A™™)) transformations provided ¢ is a scalar. The combined @, S, K,,, D and A trans-
formation of these constraints requires

1 . .
0Ay) = -€xor + ApAg + %W.Ao = %A05¢

2
. 3 i
dxor = Pr(IP° Ao + Fo)e + 2A0CR + 5)\DXOR — JWXor = 0
1 1-
oy = 520 — 50 — 2R + OuAp = 0 (B.5)

where DS, Ay = 0 Ag — %me() r— by Ay — %Aon. This is solved by requiring

5¢ = w, )‘D = 07 57]2 = i(gqu - Z¢m)7 2<R = _AEIPR(wCAO + fO)E (B6)

9Usually one calls the operator %(1 +s) the projection operator onto left-handed fermions, but because

in [@] it is denoted by Pr, we will also here denote it by Pg.
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This tells us that the U(1)4 symmetry is preserved provided it acts on ¢ with a shift,
d4(w)¢ = w; the D symmetry is broken and can be simply dropped; S and K,,, symmetries
are broken but play a role in restoring the () symmetry. The Poincaré susy is given by the
“Q+ S+ K” formula [, 1]

3G (€) = 0g(€) + 85(C(€)) + Ox (£ (€)) (B.7)
where ((¢) and £(e) are given in (B.6). For ((e) we find

1 (= i g~ = _ -
Pr( = _§PR <7'—0 - §7mAm> & Fo=Ay'Fo, Au=A,— 0.0 (B.8)

where we note that (5A(w).7?0 = —%iw]?o and (5A(w)gm = 0. Defining Fo= %(ﬁo —H’éo) and
extracting the projector Pgr = %(1 + 75), we obtain

P
¢ = _Z(F0+Z'75GO — 57" Am e (B.9)

Finally, for comparison with the conventional old-minimal (OM) formulation, we define'°

3~ 3~ 3 3
— 2R, P=-3G,, A™=_24, a=- B.1
S 2 05 2G07 n 2 wy @ 2¢ ( 0)
which gives for our OMA sugra
1 — 1 > - m — aux
C(e) = 5He, = —g(S — i P+ i7" B), By =A™ —0ua (B.11)

This is the key formula that we need. Using the “Q + .5+ K” rule (taking into account that
all independent fields are inert under K), it is straightforward to write explicitly Poincaré
susy transformations of fields in the OMA sugra multiplet (e,™, ¥, A, S, P a), and fields
in other multiplets (chiral, linear, vector, etc.).

From (B.§) we observe that ¢ (or a) shifts under U(1) 4, but is inert under @, S, K.
Therefore, it is inert under Poincaré susy. To understand how this can be consistent with
the usual statement that “two susy transformations yield a translation,” we need to find
the susy algebra for OMA sugra.

The commutator of two Poincaré susy transformations follows from the superconformal
algebra and the “Q + S + K” rule [, [J] and we find,!! for OM, OMA and NM sugra,

[65(€1), 85 (€2)] = 8g.c. (") + 0G5 (=€) + 5a(—E" Ay + EpivsCy)

-~ mn 1— mn
+5L <£lu‘wu + 56[1’7 CQ}) (B12)

OWith 240 = €', we have .7-'o = 2e"F, or F‘o + ié() = 2efi¢(Fg + iGo). For OM sugra with ¢ = 0,
this gives S = 3Fp and P = —3G) [Ef@]

" The K transformation with parameter £ (¢) = i(azﬁm — Ctm), as well as the field dependence of both
C(e) and €X (e), are crucial for the recombination of composite @Q, S, K transformations on the right hand
side of the commutator into the composite Poincaré susy transformation 65(—{“1@).
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where £# = %Eg’y“el, C12 = ((e1,2) and w,™ is the usual supercovariant spin connection;
we also introduced the notation [12] = 12—21. Substituting (e) of OMA sugra, see (B.11),
we find

165 (e1), 65 (e2)] O22 6,.0.(€#) + 65 (— wwm £19,,9)

1
+0r, <£“w 627 (S —ivsP)er + gem”‘“’&“By> (B.13)

The form of the composite U(1)4 transformation explains why ¢ can be inert under susy:
the commutator of two Poincaré susy transformations on ¢ vanishes because the sum of
the composite d4.. and d4 transformations of ¢ vanishes. Setting ¢ = 0 gives the algebra
for OM sugra.

C. Conventions and technical details

Our conventions are the same as in [l] with the obvious extension from d = 3 to d = 4.

(M,N,K) are d = 4 world (curved) indices; (A, B,C) are d = 4 tangent (flat) indices;

spinor indices are always implicit. We use the decomposition M = (m,3) and A = (a,3)

withm = 0,1,2 and a = 0,1, 2. The space M has boundary &M at 2 = 0 with coordinates
™. points in M have z3 > 0. The gamma matrices v, v5 satisfy

7A7B — 77AB + 7A37 75 ,71,72,73270’ ,VABC'D — Z"Y5€ABCD (Cl)

where 748 = (— + ++) and 601?3 = +1. It follows that (y3)2 = 1 and (v5)% = 1. Our
spinors are Majorana, 9 = ¢fin® = 7C, where (10) = =10, (v1,7%,9%)F = (1,4%,9%)
and CT = —C, CyAC~" = —(4*)T. The spinorial projectors Py satisfy

Pi=-(1++%, P.+P_ =1 P.P.=Py, P.P_ =0 (C.2)

N =

where we stress that 73 is constant. We decompose spinors as ¢ = ¥, + 1_ where ¢4 =
Py, It follows that Ei = EPJF. Therefore, for example, ¢1) = ¢ LY_ + b 1.

General coordinate d, . (€) and local Lorentz transformations &7,()) of the vielbein e,

and gravitino ¥ ,; are given by

59_0,(§)€MA = §N8N6MA + (8M§N)6NA, 5L()\)€MA = )\ABGMB
1
Og.c.(E)onr = €V Onn + (O™ ), orNom = AP yappu - (C3)
with MB = —ABA. We use D(w)ys to denote a Lorentz covariant derivative constructed

with connection wysap; for example, D(©) N = Optdn + %@MABVABMV. The superco-
variant spin connection Wy 45 is given by

) 1 _ _
WOMAB = w(€)MAB + KMAB, KMAB = Z(T/}M’YAl/}B — Yy vBYA + Y 4 YMYB)

1
w(e)map = §(CMAB — Cupa —Casuy), Cun™ = dyren™ — dnenr” (C.4)
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where ¥4 = eaMipyr, ete.: w(e)map is the torsion-free connection and kyr4p is the con-
torsion tensor. Under local Lorentz transformations 6(A)@oyap = —D(©)pmAaB.

The induced metric on a hypersurface with constant 22 is g, = em“ena + emiens.

a

In general, therefore, e,,* is not the induced vielbein. In the gauge e,,®> = 0, however,

Gmn = €m®enq and e, is the induced vielbein. Imposing e,,®> = 0 implies e,> = 0, and
= e, =0, we have e;,%,™ = 0,,", e, et = 5ab, 633633 =1

vice versa. In the gauge e,,>

as well as
Y = em™as V3 = €%+ ey, AT =% ™, =10 (C.5)

In addition, w(e),qap coincides with the torsion-free connection constructed out of e;,”

@ is the extrinsic curvature tensor [lll. Note that under local

whereas K, = w(e),,.56n

Lorentz transformations §(\)w —D,,(@)A,3. For the modified susy transformation

ma3 =
including A 3 = —€;9,_, the supercovariant extrinsic curvature is therefore
N R _ 1 _ _
Ko = Wnad — §¢m+¢a— = Ko + Z(wm’}’awg + wa’meg - 1/%%) (CG)

and as the bosonic part is symmetric,'? Ky, = Kp,, we find that I?ab = IA(ba. Performing
the following decomposition,

~ ~ _ _ 1 — — —

Wmab = W:,;ab + Kpab Kpab = Z(wm—’}'awb— - wm—’}’bwa— + wa—’meb—)

~ 1 — — _

W:,;ab = W(e)mab + Krt:,ab’ H:;mb = Z(wm-i-’}’awb—l— - wm-i-’}’bwa-i- + wa-i-’meb—l—) (07)

we observe that &7:1 b 18 the supercovariant spin connection for the induced vielbein e;,®.
(Supercovariant both under ordinary susy transformations and under modified susy trans-
formations.)

Fierzing in d = 4 is done using the following formula

IVE) = -0, 0= (1 w0 Jsvan, twa ) (€

where in O’ the Lorentz indices A, B are raised. In addition one uses that, for Majorana
spinors, eyA1 ... YAk = (=)FPyAr . yAe and Eysy L. AR = Yysy e L yATe. With
the decomposition A = (a,3), we can write

0; =1, Y 3 5 Vs 5%er 15, ¥5) (C.9)

Using 7% = —e“bcz’75%73, eabe = cabed and €ap€¢ = —26,.¢ we find that

0;=0f®0;, Of = (Ve ¥ Y5 11573)
O; = (1, 735 ©5%, 5%%3) (C.10)

so that only 7 +O;-'1[)+, ﬁ_O;-'?[)_ and 7 +Oj_1[)_, ﬁ_Oj_?[)+ are nonvanishing.

2Use (@) and C ;3 = 0, which is the case in the gauge em3 =€, =0.
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A tensor with complete antisymmetrization in d = 3 indices a, b, ¢ must be proportional

to the d = 3 Levi-Civita tensor €. For a tensor satisfying Cyp. = —Cpo this means
1 1
C[abc} = g(cabc + Cbca + Ccab) = 6abcC(y C= _Eeabccabc (Cll)

abc

Applying this to Cype = 1,750 and using €%y, = i757“b73, we find the following identity

_ _ _ -
%’W/Jc + 1/}b7c1/}a + 1/10"}/@1/11, =3eqcC, C = éwazfyﬁ"’y bfyéwb (C.12)

With these conventions and tricks, let us now perform some of the technical derivations
referred to in the main text. To prove (f.§), we need to work out

~ 1

a3 — 3. 2_ . a
€=37 Se1t(—Eop o) + 12’7561+< — 302+1757 %—) -(1<2) (C.13)

Forming a scalar by multiplying with a spinor ¢ and using Va3 €+ = VaV3€+ = VYa€, We get
~ 1 — _ 1 - _
Pe = —§(¢7a€1+)(€2+%—) + §(¢7561+)(€2+757a¢a—) -(1<2) (C.14)
Fierzing this expression into the form € Oje14, we find
— 1 _ _ _
3¢ = 5 (@21:0j61) [$1°0s00- = 31501757 a | = (1 = 2) (C.15)

Only O;r survives in €4 Oje14; 75 dependent terms in O;r drop out due to “1 <> 2.” The
remaining two objects in O;-', 7* and iy*vs, contribute equally and yield

1, _ _
g€ = 7(Ermert) [qﬁ’y“’vbwa— - ¢’Ys’Yb’Y5’Ya¢a—} ~(1=2) (C.16)
Using 757%75 = =7, 77" +7°9* = 2n® and €4 yeay = —€24 €14, we find

~ 1

€= (@7 14 )% = 5€"a- (C.17)

where €% = 2(€9; 7%, ). This proves (b.6).
To prove (B.7), we first find, using same tricks while Fierzing, that

Aas(e2) A 3(e14) — (1 = 2) = (Ea4tha—)(E14hp-) — (1 < 2)
= @051 @y 00 ) — (1 2)

c 7 1 c(
= —(E2+7°e1+) (Vp—Vetba—) = §§ (wa—’chb—) (C’18)
Writing Opmep = O, + K., as in (C-1), we find from (F-4) that
c —= c, .— 1 c(
(A3)ab = ETL, — €orVanC—(e1)4) + E%yy, — 5& (Waretn-) (C.19)
Using the identity in ({C.12) with v3¢,— = —1),_, we obtain

1— 1 — — — 1
Keab — 5%_%%— = Z(%_%ﬂ)b— — Ve NWa— — Vo Yethp—) = _geach (C.20)
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where W = %Ea_z”yg,’y“bwb_. Using €up¢7¢ = 195%abY3, We find
§€abe = 2(€a1175Yab€1+) = €24 VabiV5€1)+ (C.21)
This allows to write (A3)qp in the following form
(A3)ab = £Dlp — FarvarC (en)4) (C.22)

where ¢’ (e4) = (—(e4) + 3iyse4+W. This proves (5.7).
To prove (b.10), we first collect the terms in (F.9) remaining after projection with P_,

_ 5~ 3.
§'(ex)hae = —(€47 War )b + 7P e4 8,5 — 51756+ Aa — Yalt(e+)
1 . 3. 2. .
+§’Yc§,1/1a+(—€+¢_) + ZZ’YE,%JF — 36+ Yo (C.23)
where we used, in particular, that P_vy5 = y5P1 as 7375 = —7573. Completing @, 4 into

the & (e4) supercovariant Kqe = 0,5 — 3%y te—, see (CH), we write

~ 3.
5/(64—)7/}(1— = 7b€+Kab - 52’}’564—14(1 - ’YaC-i—(E-I—) +Q-

Q- = %Vb@r@a#ﬁb—) — Yo (€47 Yat)
_%7b¢a+ (Exthp—) + %’75¢a+ (E+757"p-) (C.24)

Fierzing ¢ +Q_ into the form U, +Oj1y,_, where only Oj_ survives (with 3 and ivy57.73
doubling the contributions of 1 and ivy57., respectively), gives

— — — 1 1 1 1
$1Q- = (Boi =) (P17 es) <§ —5tg- Z)
A 1— c b 1 b.c 1— c. b
H(Wap157c8-) { 5047577 € + 10as V57V e — 104157 e
A 1— c c 1 — A
= (Yot ¥57etp-) <§¢+75(7 Y= b)6+> = 5(@11564)(Yas157" =) (C.25)
We can absorb ()_ by redefining A,
-3 .
5 (e )hae = Vs Kop — i€+ Ada — Yalt(e+) (C.26)
where A, = A, + %E[Hi%ﬁbzﬁb_. This proves (p.10).

Finally, to prove (6.9), we first collect the terms in (6.1]) which survive the projection
with P_|_,

~ 1w
8 (ex)hms = 2D" (@ )mes — YmC-(ex) + 57 ek + Q+

2
@+ = 37" (Estha) + 350m- (€475 ) (c.21)
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Fierzing ¢_Q into the form 1,_0;1,,_, where only Q; survives (with iv.vs and iy573
doubling the contributions of +. and s, respectively), gives

0 Qs = (Vo Yelm—) [ - i@_’yavcw) + i(a_vcv“u)]

+(Va-5tm—) (P v5€+) < - i + i) (C.28)

so that Q4 = —%'y“bq (Yy_Yp¥m—). Combining with the K, term, we find

1 B 1 _ _ _
ek A+ Qr = — et (W Valb — Vi VoPa— — D YmWp—)

2 8
1 1 .
= _57“”e+ ( — ieabmW> = — 5 mivser W (C.29)

with W = %Ea_i%’y“bwb_. We used the result in (C:20) and yeqp. = 2iy57c73. We can
now combine this result with the term —~,,(_(e4+) to find

&' (e4)ms = 2D"([@ )mes —ymCl(er) (C.30)

where ¢’ (e4) = (_(e4) + 3iy5e4+W. This proves (6-3).
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